Suppr超能文献

衰老是雌性 C57BL/6JN 小鼠骨细胞周围腔-管系统周转率降低的原因。

Aging decreases osteocyte peri-lacunar-canalicular system turnover in female C57BL/6JN mice.

机构信息

Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT, USA.

Department of Biomedical Sciences, College of Idaho, Caldwell, ID, USA.

出版信息

Bone. 2024 Sep;186:117163. doi: 10.1016/j.bone.2024.117163. Epub 2024 Jun 8.

Abstract

Osteocytes engage in bone resorption and mineralization surrounding their expansive lacunar-canalicular system (LCS) through peri-LCS turnover. However, fundamental questions persist about where, when, and how often osteocytes engage in peri-LCS turnover and how these processes change with aging. Furthermore, whether peri-LCS turnover is associated with natural variation in cortical tissue strain remains unexplored. To address these questions, we utilized confocal scanning microscopy, immunohistochemistry, and scanning electron microscopy to characterize osteocyte peri-LCS turnover in the cortical (mid-diaphysis) and cancellous (metaphysis) regions of femurs from young adult (5 mo) and early-old-age (22 mo) female C57BL/6JN mice. LCS bone mineralization was measured by the presence of perilacunar fluorochrome labels. LCS bone resorption was measured by immunohistochemical marker of bone resorption. The dynamics of peri-LCS turnover were estimated from serial fluorochrome labeling, where each mouse was administered two labels between 2 and 16 days before euthanasia. Osteocyte participation in mineralizing their surroundings is highly abundant in both cortical and cancellous bone of young adult mice but significantly decreases with aging. LCS bone resorption also decreases with aging. Aging has a greater impact on peri-LCS turnover dynamics in cancellous bone than in cortical bone. Lacunae with recent peri-LCS turnover are larger in both age groups. While peri-LCS turnover is associated with variation in tissue strain between cortical quadrants and intracortical location for 22 mo mice, these associations were not seen for 5 mo mice. The impact of aging on decreasing peri-LCS turnover may have significant implications for bone quality and mechanosensation.

摘要

骨细胞通过周围的腔隙 - 管道系统 (LCS) 进行骨吸收和矿化,从而参与周围的 LCS 转换。然而,关于骨细胞何时以及如何频繁地参与周围的 LCS 转换,以及这些过程如何随年龄变化等基本问题仍然存在。此外,周围的 LCS 转换是否与皮质组织应变的自然变化有关仍未得到探索。为了解决这些问题,我们利用共聚焦扫描显微镜、免疫组织化学和扫描电子显微镜来描述年轻成年(5 个月)和早期老年(22 个月)雌性 C57BL/6JN 小鼠股骨皮质(骨干)和松质(干骺端)区域骨细胞的周围 LCS 转换。LCS 骨矿化通过氟染料标记的存在来测量。LCS 骨吸收通过骨吸收的免疫组织化学标志物来测量。从连续的氟染料标记估计周围 LCS 转换的动态,其中每只小鼠在安乐死前 2 至 16 天之间接受两次标记。年轻成年小鼠的皮质和松质骨中,骨细胞参与周围矿化的能力非常丰富,但随着年龄的增长而显著下降。LCS 骨吸收也随年龄增长而减少。衰老对松质骨中周围 LCS 转换动力学的影响大于皮质骨。在两个年龄组中,最近进行周围 LCS 转换的腔隙更大。虽然周围 LCS 转换与 22 个月龄小鼠皮质骨和皮质骨内不同象限之间的组织应变变化有关,但在 5 个月龄小鼠中没有观察到这些关联。衰老对周围 LCS 转换减少的影响可能对骨质量和机械感觉有重大影响。

相似文献

1
Aging decreases osteocyte peri-lacunar-canalicular system turnover in female C57BL/6JN mice.
Bone. 2024 Sep;186:117163. doi: 10.1016/j.bone.2024.117163. Epub 2024 Jun 8.
2
Aging decreases osteocyte lacunar-canalicular turnover in female C57BL/6 mice.
bioRxiv. 2023 Dec 16:2023.12.15.571934. doi: 10.1101/2023.12.15.571934.
4
Computational modeling based on confocal imaging predicts changes in osteocyte and dendrite shear stress due to canalicular loss with aging.
Biomech Model Mechanobiol. 2024 Feb;23(1):129-143. doi: 10.1007/s10237-023-01763-w. Epub 2023 Aug 29.
5
Effects on Mass Transfer in the Bone Lacunar-Canalicular System under Different Radial Extracorporeal Shock Waves.
Tissue Eng Regen Med. 2025 Apr;22(3):297-308. doi: 10.1007/s13770-025-00707-y. Epub 2025 Feb 20.
7
Impacts of Nonenzymatic Glycation Crosslinks in Bone Matrix on the Mechanosensitivity of Osteocyte.
Calcif Tissue Int. 2025 Aug 2;116(1):103. doi: 10.1007/s00223-025-01411-8.
9
The Black Book of Psychotropic Dosing and Monitoring.
Psychopharmacol Bull. 2024 Jul 8;54(3):8-59.

引用本文的文献

本文引用的文献

1
Aging impairs the osteocytic regulation of collagen integrity and bone quality.
Bone Res. 2024 Feb 26;12(1):13. doi: 10.1038/s41413-023-00303-7.
2
Intravital imaging of osteocyte integrin dynamics with locally injectable fluorescent nanoparticles.
Bone. 2023 Sep;174:116830. doi: 10.1016/j.bone.2023.116830. Epub 2023 Jun 15.
3
Germ-Free C57BL/6 Mice Have Increased Bone Mass and Altered Matrix Properties but Not Decreased Bone Fracture Resistance.
J Bone Miner Res. 2023 Aug;38(8):1154-1174. doi: 10.1002/jbmr.4835. Epub 2023 Jun 21.
4
Osteocyte Remodeling of the Lacunar-Canalicular System: What's in a Name?
Curr Osteoporos Rep. 2023 Feb;21(1):11-20. doi: 10.1007/s11914-022-00766-3. Epub 2022 Dec 13.
6
Osteocytes in bone aging: Advances, challenges, and future perspectives.
Ageing Res Rev. 2022 May;77:101608. doi: 10.1016/j.arr.2022.101608. Epub 2022 Mar 11.
7
Mechanical Stimulation on Mesenchymal Stem Cells and Surrounding Microenvironments in Bone Regeneration: Regulations and Applications.
Front Cell Dev Biol. 2022 Jan 21;10:808303. doi: 10.3389/fcell.2022.808303. eCollection 2022.
9
Estrogen depletion on In vivo osteocyte calcium signaling responses to mechanical loading.
Bone. 2021 Nov;152:116072. doi: 10.1016/j.bone.2021.116072. Epub 2021 Jun 24.
10
Disrupted osteocyte connectivity and pericellular fluid flow in bone with aging and defective TGF-β signaling.
Proc Natl Acad Sci U S A. 2021 Jun 22;118(25). doi: 10.1073/pnas.2023999118.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验