Suppr超能文献

利用人工智能预测死亡率来确定目标医疗照护文件的公平性。

Equity in Using Artificial Intelligence Mortality Predictions to Target Goals of Care Documentation.

机构信息

Division of General Internal Medicine, Section of Palliative Care and Medical Ethics, University of Pittsburgh, Pittsburgh, PA, USA.

Palliative Research Center, University of Pittsburgh, Pittsburgh, PA, USA.

出版信息

J Gen Intern Med. 2024 Nov;39(15):3001-3008. doi: 10.1007/s11606-024-08849-w. Epub 2024 Jun 10.

Abstract

BACKGROUND

Artificial intelligence (AI) algorithms are increasingly used to target patients with elevated mortality risk scores for goals-of-care (GOC) conversations.

OBJECTIVE

To evaluate the association between the presence or absence of AI-generated mortality risk scores with GOC documentation.

DESIGN

Retrospective cross-sectional study at one large academic medical center between July 2021 and December 2022.

PARTICIPANTS

Hospitalized adult patients with AI-defined Serious Illness Risk Indicator (SIRI) scores indicating > 30% 90-day mortality risk (defined as "elevated" SIRI) or no SIRI scores due to insufficient data.

INTERVENTION

A targeted intervention to increase GOC documentation for patients with AI-generated scores predicting elevated risk of mortality.

MAIN MEASURES

Odds ratios comparing GOC documentation for patients with elevated or no SIRI scores with similar severity of illness using propensity score matching and risk-adjusted mixed-effects logistic regression.

KEY RESULTS

Among 13,710 patients with elevated (n = 3643, 27%) or no (n = 10,067, 73%) SIRI scores, the median age was 64 years (SD 18). Twenty-five percent were non-White, 18% had Medicaid, 43% were admitted to an intensive care unit, and 11% died during admission. Patients lacking SIRI scores were more likely to be younger (median 60 vs. 72 years, p < 0.0001), be non-White (29% vs. 13%, p < 0.0001), and have Medicaid (22% vs. 9%, p < 0.0001). Patients with elevated versus no SIRI scores were more likely to have GOC documentation in the unmatched (aOR 2.5, p < 0.0001) and propensity-matched cohorts (aOR 2.1, p < 0.0001).

CONCLUSIONS

Using AI predictions of mortality to target GOC documentation may create differences in documentation prevalence between patients with and without AI mortality prediction scores with similar severity of illness. These finding suggest using AI to target GOC documentation may have the unintended consequence of disadvantaging severely ill patients lacking AI-generated scores from receiving targeted GOC documentation, including patients who are more likely to be non-White and have Medicaid insurance.

摘要

背景

人工智能(AI)算法越来越多地用于针对死亡率风险评分较高的患者进行治疗目标(GOC)对话。

目的

评估 AI 生成的死亡率风险评分的存在与否与 GOC 文档之间的关联。

设计

2021 年 7 月至 2022 年 12 月期间在一家大型学术医疗中心进行的回顾性横断面研究。

参与者

AI 定义的严重疾病风险指标(SIRI)评分表明 90 天死亡率超过 30%(定义为“升高”SIRI)或由于数据不足而没有 SIRI 评分的住院成年患者。

干预

针对 AI 生成的预测死亡率升高风险的评分的患者,增加 GOC 文档记录的有针对性的干预措施。

主要措施

使用倾向评分匹配和风险调整混合效应逻辑回归比较 GOC 文档记录对于 SIRI 评分升高或不升高的患者,与相似严重程度的患者的比值比。

主要结果

在 13710 名 SIRI 评分升高(n=3643,27%)或不升高(n=10067,73%)的患者中,中位年龄为 64 岁(SD 18)。25%是非白人,18%有医疗补助,43%被收住重症监护病房,11%在住院期间死亡。缺乏 SIRI 评分的患者更有可能年龄较小(中位数为 60 岁 vs. 72 岁,p<0.0001),非白人(29% vs. 13%,p<0.0001),并拥有医疗补助(22% vs. 9%,p<0.0001)。与无 SIRI 评分的患者相比,SIRI 评分升高的患者在未匹配(优势比 2.5,p<0.0001)和倾向匹配队列(优势比 2.1,p<0.0001)中更有可能进行 GOC 文档记录。

结论

使用 AI 预测死亡率来针对 GOC 文档记录可能会在病情严重程度相似的患者中产生具有 AI 死亡率预测评分和无 AI 死亡率预测评分的患者之间的文档记录流行率的差异。这些发现表明,使用 AI 来针对 GOC 文档记录可能会产生意想不到的后果,使缺乏 AI 生成评分的重病患者无法获得针对性的 GOC 文档记录,包括更有可能是非白人且拥有医疗补助保险的患者。

相似文献

1
Equity in Using Artificial Intelligence Mortality Predictions to Target Goals of Care Documentation.
J Gen Intern Med. 2024 Nov;39(15):3001-3008. doi: 10.1007/s11606-024-08849-w. Epub 2024 Jun 10.
5
Goals of Care Assessment during Hospitalization for Sepsis.
Ann Am Thorac Soc. 2025 Jul;22(7):1035-1041. doi: 10.1513/AnnalsATS.202410-1041OC.
6
Melatonin for the promotion of sleep in adults in the intensive care unit.
Cochrane Database Syst Rev. 2018 May 10;5(5):CD012455. doi: 10.1002/14651858.CD012455.pub2.
8
Effects of a gluten-reduced or gluten-free diet for the primary prevention of cardiovascular disease.
Cochrane Database Syst Rev. 2022 Feb 24;2(2):CD013556. doi: 10.1002/14651858.CD013556.pub2.
9
Nirmatrelvir combined with ritonavir for preventing and treating COVID-19.
Cochrane Database Syst Rev. 2022 Sep 20;9(9):CD015395. doi: 10.1002/14651858.CD015395.pub2.
10
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?
Clin Orthop Relat Res. 2024 Sep 1;482(9):1710-1721. doi: 10.1097/CORR.0000000000003030. Epub 2024 Mar 22.

引用本文的文献

1
How Do Clinicians Use Quotations in Goals of Care Notes?
Chest. 2025 Jun;167(6):1737-1745. doi: 10.1016/j.chest.2025.01.014. Epub 2025 Jan 21.

本文引用的文献

1
Guiding Principles to Address the Impact of Algorithm Bias on Racial and Ethnic Disparities in Health and Health Care.
JAMA Netw Open. 2023 Dec 1;6(12):e2345050. doi: 10.1001/jamanetworkopen.2023.45050.
2
Implementing a Serious Illness Risk Prediction Model: Impact on Goals of Care Documentation.
J Pain Symptom Manage. 2023 Dec;66(6):603-610.e3. doi: 10.1016/j.jpainsymman.2023.07.015. Epub 2023 Jul 31.
5
Equity in Using Artificial Intelligence to Target Serious Illness Conversations for Patients With Life-Limiting Illness.
J Pain Symptom Manage. 2023 Aug;66(2):e299-e301. doi: 10.1016/j.jpainsymman.2023.04.002. Epub 2023 Apr 11.
6
Artificial Intelligence and Machine Learning in Clinical Medicine, 2023.
N Engl J Med. 2023 Mar 30;388(13):1201-1208. doi: 10.1056/NEJMra2302038.
8
Predictors of Documented Goals-of-Care Discussion for Hospitalized Patients With Chronic Illness.
J Pain Symptom Manage. 2023 Mar;65(3):233-241. doi: 10.1016/j.jpainsymman.2022.11.012. Epub 2022 Nov 22.
9
Use of Machine Learning and Lay Care Coaches to Increase Advance Care Planning Conversations for Patients With Metastatic Cancer.
JCO Oncol Pract. 2023 Feb;19(2):e176-e184. doi: 10.1200/OP.22.00128. Epub 2022 Nov 17.
10
Equity Challenges for Artificial Intelligence Algorithms in Health Care.
Chest. 2022 May;161(5):1343-1346. doi: 10.1016/j.chest.2022.01.009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验