Suppr超能文献

注射器-真空微流控:一种制备单分散乳液的便携式技术。

Syringe-vacuum microfluidics: A portable technique to create monodisperse emulsions.

机构信息

Department of Physics, School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.

出版信息

Biomicrofluidics. 2011 Mar 16;5(1):14107. doi: 10.1063/1.3567093.

Abstract

We present a simple method for creating monodisperse emulsions with microfluidic devices. Unlike conventional approaches that require bulky pumps, control computers, and expertise with device physics to operate devices, our method requires only the microfluidic device and a hand-operated syringe. The fluids needed for the emulsion are loaded into the device inlets, while the syringe is used to create a vacuum at the device outlet; this sucks the fluids through the channels, generating the drops. By controlling the hydrodynamic resistances of the channels using hydrodynamic resistors and valves, we are able to control the properties of the drops. This provides a simple and highly portable method for creating monodisperse emulsions.

摘要

我们提出了一种使用微流控装置制备单分散乳液的简单方法。与传统方法需要庞大的泵、控制计算机以及对设备物理特性的专业知识来操作设备不同,我们的方法只需要微流控设备和手动注射器。乳液所需的流体被装入设备入口,而注射器用于在设备出口处产生真空;这会将流体吸入通道,生成液滴。通过使用流体阻力器和阀门来控制通道的流体阻力,我们能够控制液滴的性质。这为制备单分散乳液提供了一种简单且高度便携的方法。

相似文献

1
Syringe-vacuum microfluidics: A portable technique to create monodisperse emulsions.
Biomicrofluidics. 2011 Mar 16;5(1):14107. doi: 10.1063/1.3567093.
2
A hand-powered microfluidic system for portable and low-waste sample discretization.
Lab Chip. 2021 Sep 14;21(18):3429-3437. doi: 10.1039/d1lc00448d.
3
Rapid Patterning of PDMS Microfluidic Device Wettability Using Syringe-Vacuum-Induced Segmented Flow in Nonplanar Geometry.
ACS Appl Mater Interfaces. 2018 Jan 31;10(4):3170-3174. doi: 10.1021/acsami.7b17132. Epub 2018 Jan 19.
4
Negative Pressure Provides Simple and Stable Droplet Generation in a Flow-Focusing Microfluidic Device.
Micromachines (Basel). 2021 Jun 5;12(6):662. doi: 10.3390/mi12060662.
5
A disposable emulsion droplet generation lab chips driven by vacuum module for manipulation of blood cells.
Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:8010-3. doi: 10.1109/EMBC.2015.7320251.
6
Recent progress in the synthesis of all-aqueous two-phase droplets using microfluidic approaches.
Colloids Surf B Biointerfaces. 2022 Nov;219:112795. doi: 10.1016/j.colsurfb.2022.112795. Epub 2022 Aug 27.
7
A hand-held, power-free microfluidic device for monodisperse droplet generation.
MethodsX. 2018 Aug 20;5:984-990. doi: 10.1016/j.mex.2018.08.008. eCollection 2018.
8
One-step formation of multiple emulsions in microfluidics.
Lab Chip. 2011 Jan 21;11(2):253-8. doi: 10.1039/c0lc00236d. Epub 2010 Oct 22.
9
Glass-Based Devices to Generate Drops and Emulsions.
J Vis Exp. 2022 Apr 5(182). doi: 10.3791/63376.
10
A Compact, Syringe-Assisted, Vacuum-Driven Micropumping Device.
Micromachines (Basel). 2019 Aug 17;10(8):543. doi: 10.3390/mi10080543.

引用本文的文献

1
Digital droplet RT-LAMP increases speed of SARS-CoV-2 viral RNA detection.
Smart Med. 2024 Jun 5;3(2):e20240008. doi: 10.1002/SMMD.20240008. eCollection 2024 Jun.
2
Influence of triangular obstacles on droplet breakup dynamics in microfluidic systems.
Sci Rep. 2024 Jun 10;14(1):13324. doi: 10.1038/s41598-024-63922-y.
4
Droplet microfluidic devices for organized stem cell differentiation into germ cells: capabilities and challenges.
Biophys Rev. 2021 Nov 17;13(6):1245-1271. doi: 10.1007/s12551-021-00907-5. eCollection 2021 Dec.
5
Negative Pressure Provides Simple and Stable Droplet Generation in a Flow-Focusing Microfluidic Device.
Micromachines (Basel). 2021 Jun 5;12(6):662. doi: 10.3390/mi12060662.
6
High-Throughput Optofluidic Acquisition of Microdroplets in Microfluidic Systems.
Micromachines (Basel). 2018 Apr 14;9(4):183. doi: 10.3390/mi9040183.
7
Operation of Droplet-Microfluidic Devices with a Lab Centrifuge.
Micromachines (Basel). 2016 Sep 6;7(9):161. doi: 10.3390/mi7090161.
8
Micropipette-powered droplet based microfluidics.
Biomicrofluidics. 2018 Jul 10;12(4):044106. doi: 10.1063/1.5037795. eCollection 2018 Jul.
9
A microfluidic gas damper for stabilizing gas pressure in portable microfluidic systems.
Biomicrofluidics. 2016 Oct 28;10(5):054123. doi: 10.1063/1.4966646. eCollection 2016 Sep.
10
Simple Bulk Readout of Digital Nucleic Acid Quantification Assays.
J Vis Exp. 2015 Sep 24(103):52925. doi: 10.3791/52925.

本文引用的文献

1
Soft Lithography.
Angew Chem Int Ed Engl. 1998 Mar 16;37(5):550-575. doi: 10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G.
2
High-throughput injection with microfluidics using picoinjectors.
Proc Natl Acad Sci U S A. 2010 Nov 9;107(45):19163-6. doi: 10.1073/pnas.1006888107. Epub 2010 Oct 20.
3
Ultrahigh-throughput screening in drop-based microfluidics for directed evolution.
Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4004-9. doi: 10.1073/pnas.0910781107. Epub 2010 Feb 8.
4
Impact of inlet channel geometry on microfluidic drop formation.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Aug;80(2 Pt 2):026310. doi: 10.1103/PhysRevE.80.026310. Epub 2009 Aug 19.
5
Beating Poisson encapsulation statistics using close-packed ordering.
Lab Chip. 2009 Sep 21;9(18):2628-31. doi: 10.1039/b909386a. Epub 2009 Jul 28.
6
Droplet microfluidic technology for single-cell high-throughput screening.
Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14195-200. doi: 10.1073/pnas.0903542106. Epub 2009 Jul 15.
7
Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity.
Lab Chip. 2009 Jul 7;9(13):1850-8. doi: 10.1039/b902504a. Epub 2009 Apr 23.
8
Reliable microfluidic on-chip incubation of droplets in delay-lines.
Lab Chip. 2009 May 21;9(10):1344-8. doi: 10.1039/b816049j. Epub 2008 Dec 19.
9
Controlled encapsulation of single-cells into monodisperse picolitre drops.
Lab Chip. 2008 Aug;8(8):1262-4. doi: 10.1039/b805456h. Epub 2008 Jun 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验