Opt Express. 2024 May 20;32(11):20370-20384. doi: 10.1364/OE.521746.
The rapid advancement of photonic technologies has facilitated the development of photonic neurons that emulate neuronal functionalities akin to those observed in the human brain. Neuronal bursts frequently occur in behaviors where information is encoded and transmitted. Here, we present the demonstration of the bursting response activated by an artificial photonic neuron. This neuron utilizes a single vertical-cavity surface-emitting laser (VCSEL) and encodes multiple stimuli effectively by varying the spike count during a burst based on the polarization competition in the VCSEL. By virtue of the modulated optical injection in the VCSEL employed to trigger the spiking response, we activate bursts output in the VCSEL with a feedback structure in this scheme. The bursting response activated by the VCSEL-neuron exhibits neural signal characteristics, promising an excitation threshold and the refractory period. Significantly, this marks the inaugural implementation of a controllable integrated encoding scheme predicated on bursts within photonic neurons. There are two remarkable merits; on the one hand, the interspike interval of bursts is distinctly diminished, amounting to merely one twenty-fourth compared to that observed in optoelectronic oscillators. Moreover, the interspike period of bursts is about 70.8% shorter than the period of spikes activated by a VCSEL neuron without optical feedback. Our results may shed light on the analogy between optical and biological neurons and open the door to fast burst encoding-based optical systems with a speed several orders of magnitude faster than their biological counterparts.
光子技术的快速发展促进了光子神经元的发展,这些神经元模拟了类似于人类大脑中观察到的神经元功能。神经元爆发经常发生在信息被编码和传输的行为中。在这里,我们展示了人工光子神经元激活的爆发响应的演示。这个神经元使用单个垂直腔面发射激光器 (VCSEL),通过在爆发期间根据 VCSEL 中的偏振竞争改变爆发期间的尖峰计数,有效地对多个刺激进行编码。由于 VCSEL 中使用调制光注入来触发尖峰响应,我们在这个方案中使用反馈结构在 VCSEL 中激活爆发输出。由 VCSEL-神经元激活的爆发响应表现出神经信号特征,有望实现兴奋阈值和不应期。重要的是,这标志着基于光子神经元内的爆发的可控集成编码方案的首次实现。有两个显著的优点;一方面,爆发的尖峰间隔明显缩短,仅为光电振荡器中观察到的间隔的四分之一。此外,爆发的尖峰间隔比没有光学反馈的 VCSEL 神经元激活的尖峰间隔短约 70.8%。我们的结果可能揭示了光学和生物神经元之间的类比,并为基于快速爆发编码的光学系统开辟了道路,这些系统的速度比其生物对应物快几个数量级。