Suppr超能文献

基于耦合到垂直腔面发射激光器的共振隧穿二极管的人工光电脉冲神经元。

Artificial optoelectronic spiking neuron based on a resonant tunnelling diode coupled to a vertical cavity surface emitting laser.

作者信息

Hejda Matěj, Malysheva Ekaterina, Owen-Newns Dafydd, Ali Al-Taai Qusay Raghib, Zhang Weikang, Ortega-Piwonka Ignacio, Javaloyes Julien, Wasige Edward, Dolores-Calzadilla Victor, Figueiredo José M L, Romeira Bruno, Hurtado Antonio

机构信息

SUPA Department of Physics, Institute of Photonics, University of Strathclyde, Glasgow, UK.

Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, Eindhoven, The Netherlands.

出版信息

Nanophotonics. 2022 Nov 15;12(5):857-867. doi: 10.1515/nanoph-2022-0362. eCollection 2023 Mar.

Abstract

Excitable optoelectronic devices represent one of the key building blocks for implementation of artificial spiking neurons in neuromorphic (brain-inspired) photonic systems. This work introduces and experimentally investigates an opto-electro-optical (O/E/O) artificial neuron built with a resonant tunnelling diode (RTD) coupled to a photodetector as a receiver and a vertical cavity surface emitting laser as a transmitter. We demonstrate a well-defined excitability threshold, above which the neuron produces optical spiking responses with characteristic neural-like refractory period. We utilise its fan-in capability to perform in-device coincidence detection (logical AND) and exclusive logical OR (XOR) tasks. These results provide first experimental validation of deterministic triggering and tasks in an RTD-based spiking optoelectronic neuron with both input and output optical (I/O) terminals. Furthermore, we also investigate in simulation the prospects of the proposed system for nanophotonic implementation in a monolithic design combining a nanoscale RTD element and a nanolaser; therefore demonstrating the potential of integrated RTD-based excitable nodes for low footprint, high-speed optoelectronic spiking neurons in future neuromorphic photonic hardware.

摘要

可激发光电器件是在神经形态(受大脑启发)光子系统中实现人工脉冲神经元的关键构建模块之一。这项工作介绍并通过实验研究了一种光 - 电 - 光(O/E/O)人工神经元,它由一个与光电探测器耦合的共振隧穿二极管(RTD)作为接收器,以及一个垂直腔面发射激光器作为发射器构成。我们展示了一个明确的激发阈值,高于该阈值时,神经元会产生具有特征性类神经不应期的光学脉冲响应。我们利用其扇入能力来执行器件内的符合检测(逻辑与)和异或(XOR)逻辑任务。这些结果首次通过实验验证了基于RTD的脉冲光电器件神经元在具有输入和输出光学(I/O)终端的情况下的确定性触发和任务执行情况。此外,我们还在模拟中研究了所提出的系统在结合纳米级RTD元件和纳米激光器的单片设计中实现纳米光子学的前景;因此证明了基于RTD的可激发节点在未来神经形态光子硬件中用于低占用面积、高速光电器件脉冲神经元的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1508/11501326/508eab9c97e8/j_nanoph-2022-0362_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验