Bayati Sahar, Bagheri Harouni Malek, Mahdifar Ali
Opt Express. 2024 Apr 22;32(9):14914-14928. doi: 10.1364/OE.515093.
In this paper, we theoretically investigate the magnomechanically induced transparency (MIT) phenomenon and slow-fast light propagation in a microwave cavity-magnomechanical system which includes a levitated ferromagnetic sphere. Magnetic dipole interaction determines the interaction between the photon, magnon, and center of mass motion of the cavity-magnomechanical system. As a result, we find that apart from coupling strength, which has an important role in MIT, the levitated ferromagnetic sphere's position provides us a parameter to manipulate the width of the transparency window. In addition, the control field's frequency has crucial influences on the MIT. Also this hybrid magnonic system allows us to demonstrate MIT in both the strong coupling and intermediate coupling regimes. More interestingly, we demonstrate tunable slow and fast light in this hybrid magnonic system. In other words, we show that the group delay can be adjusted by varying the control field's frequency, the sphere position, and the magnon-photon coupling strength. These parameters have an influence on the transformation from slow to fast light propagation and vice versa. Based on the recent experimental advancements, our results provide the possibility to engineer hybrid magnonic systems with levitated particles for the light propagation, and the quantum measurements and sensing of physical quantities.
在本文中,我们从理论上研究了在包含悬浮铁磁球体的微波腔 - 磁机械系统中的磁机械诱导透明(MIT)现象以及快慢光传播。磁偶极相互作用决定了光子、磁振子以及腔 - 磁机械系统质心运动之间的相互作用。结果,我们发现除了在MIT中起重要作用的耦合强度外,悬浮铁磁球体的位置为我们提供了一个操纵透明窗口宽度的参数。此外,控制场的频率对MIT有至关重要的影响。而且这个混合磁振子系统使我们能够在强耦合和中间耦合区域都演示MIT。更有趣的是,我们在这个混合磁振子系统中演示了可调谐的慢光和快光。换句话说,我们表明可以通过改变控制场的频率、球体位置以及磁振子 - 光子耦合强度来调节群延迟。这些参数对从慢光传播到快光传播以及反之的转变有影响。基于最近的实验进展,我们的结果为设计具有悬浮粒子的混合磁振子系统用于光传播以及物理量的量子测量和传感提供了可能性。