Fili Mohammad, Mohammadiarvejeh Parvin, Klinedinst Brandon S, Wang Qian, Moody Shannin, Barnett Neil, Pollpeter Amy, Larsen Brittany, Li Tianqi, Willette Sara A, Mochel Jonathan P, Allenspach Karin, Hu Guiping, Willette Auriel A
School of Industrial Engineering and Management Oklahoma State University Stillwater Oklahoma USA.
Department of Industrial and Manufacturing Systems Engineering Iowa State University Ames Iowa USA.
Alzheimers Dement (Amst). 2024 Jun 10;16(2):e12595. doi: 10.1002/dad2.12595. eCollection 2024 Apr-Jun.
Aging is often associated with cognitive decline. Understanding neural factors that distinguish adults in midlife with superior cognitive abilities (Positive-Agers) may offer insight into how the aging brain achieves resilience. The goals of this study are to (1) introduce an optimal labeling mechanism to distinguish between Positive-Agers and Cognitive Decliners, and (2) identify Positive-Agers using neuronal functional connectivity networks data and demographics.
In this study, principal component analysis initially created latent cognitive trajectories groups. A hybrid algorithm of machine learning and optimization was then designed to predict latent groups using neuronal functional connectivity networks derived from resting state functional magnetic resonance imaging. Specifically, the Optimal Labeling with Bayesian Optimization (OLBO) algorithm used an unsupervised approach, iterating a logistic regression function with Bayesian posterior updating. This study encompassed 6369 adults from the UK Biobank cohort.
OLBO outperformed baseline models, achieving an area under the curve of 88% when distinguishing between Positive-Agers and cognitive decliners.
OLBO may be a novel algorithm that distinguishes cognitive trajectories with a high degree of accuracy in cognitively unimpaired adults.
Design an algorithm to distinguish between a Positive-Ager and a Cognitive-Decliner.Introduce a mathematical definition for cognitive classes based on cognitive tests.Accurate Positive-Ager identification using rsfMRI and demographic data (AUC = 0.88).Posterior default mode network has the highest impact on Positive-Aging odds ratio.
衰老通常与认知能力下降有关。了解区分具有卓越认知能力的中年成年人(积极老龄化者)的神经因素,可能有助于深入了解衰老大脑如何实现恢复力。本研究的目标是:(1)引入一种优化的标记机制,以区分积极老龄化者和认知衰退者;(2)使用神经元功能连接网络数据和人口统计学信息识别积极老龄化者。
在本研究中,主成分分析最初创建了潜在认知轨迹组。然后设计了一种机器学习与优化的混合算法,以使用静息态功能磁共振成像得出的神经元功能连接网络来预测潜在组。具体而言,贝叶斯优化最优标记(OLBO)算法采用无监督方法,通过贝叶斯后验更新迭代逻辑回归函数。本研究纳入了英国生物银行队列中的6369名成年人。
在区分积极老龄化者和认知衰退者时,OLBO的表现优于基线模型,曲线下面积达到88%。
OLBO可能是一种在认知未受损的成年人中以高精度区分认知轨迹的新算法。
设计一种算法来区分积极老龄化者和认知衰退者。基于认知测试引入认知类别的数学定义。使用静息态功能磁共振成像和人口统计学数据准确识别积极老龄化者(曲线下面积=0.88)。后扣带回默认模式网络对积极老龄化优势比的影响最大。