Suppr超能文献

一种使用结构性脑磁共振成像数据改进潜在超级老龄者和认知衰退者分类的多阶段特征选择方法——一项英国生物银行研究

A multi-stage feature selection method to improve classification of potential super-agers and cognitive decliners using structural brain MRI data-a UK biobank study.

作者信息

Mohammadiarvejeh Parvin, Fili Mohammad, Dawson Alice, Klinedinst Brandon S, Wang Qian, Moody Shannin, Barnett Neil, Pollpeter Amy, Larsen Brittany, Li Tianqi, Willette Sara A, Mochel Jonathan P, Allenspach Karin, Hu Guiping, Willette Auriel A

机构信息

University of Maryland Medical System, Linthicum, MD, USA.

School of Industrial Engineering and Management, Oklahoma State University, Stillwater, OK, USA.

出版信息

Geroscience. 2024 Dec 10. doi: 10.1007/s11357-024-01458-9.

Abstract

Cognitive aging is described as the age-related decline in areas such as memory, executive function, reasoning, and processing speed. Super-Agers, adults over 80 years old, have cognitive function performance comparable to middle-aged adults. To improve cognitive reserve and potentially decrease Alzheimer's disease (AD) risk, it is essential to contrast changes in regional brain volumes between "Positive-Agers" who have superior cognitive performance compared to their age peers but are not 80 years old yet and aging adults who show cognitive decline (i.e., "Cognitive Decliners"). Using longitudinal cognitive tests over 7-9 years in UK Biobank, principal component analysis (PCA) was first applied to four cognitive domains to create a general cognition (GC) composite score. The GC score was then used to identify latent cognitive groups. Given cognitive groups as the target variable and structural magnetic resonance imaging (sMRI) data and demographics as predictors, we developed a multi-stage feature selection algorithm to identify the most important features. We then trained a Random Forest (RF) classifier on the final set of 54 selected sMRI and covariate predictors to distinguish between Positive-Agers and Cognitive Decliners. The RF model achieved an AUC of 73%. The top 6 features were age, education, brain total surface area, the area of pars orbitalis, mean intensity of the thalamus, and superior frontal gyrus surface area. Prediction of cognitive trajectory types using sMRI may improve our understanding of successful cognitive aging.

摘要

认知衰老被描述为在记忆、执行功能、推理和处理速度等方面与年龄相关的衰退。超级老人是指80岁以上的成年人,他们的认知功能表现与中年成年人相当。为了提高认知储备并潜在降低阿尔茨海默病(AD)风险,对比认知表现优于同龄人但尚未年满80岁的“积极老龄化者”与表现出认知衰退的老年人(即“认知衰退者”)之间脑区体积的变化至关重要。在英国生物银行中,通过对7至9年的纵向认知测试,首先将主成分分析(PCA)应用于四个认知领域,以创建一个综合认知(GC)复合分数。然后使用该GC分数来识别潜在的认知群体。以认知群体作为目标变量,结构磁共振成像(sMRI)数据和人口统计学数据作为预测因子,我们开发了一种多阶段特征选择算法来识别最重要的特征。然后,我们在最终选定的54个sMRI和协变量预测因子集上训练了随机森林(RF)分类器,以区分积极老龄化者和认知衰退者。RF模型的曲线下面积(AUC)达到了73%。排名前6的特征是年龄、教育程度、脑总表面积、眶部面积、丘脑平均强度和额上回表面积。使用sMRI预测认知轨迹类型可能会增进我们对成功认知衰老的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验