Suppr超能文献

利用下一代测序数据的计算机辅助药物发现策略,为前列腺癌新型疗法提供新契机。

Computer-aided drug discovery strategies for novel therapeutics for prostate cancer leveraging next-generating sequencing data.

机构信息

Department of Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN, USA.

Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, USA.

出版信息

Expert Opin Drug Discov. 2024 Jul;19(7):841-853. doi: 10.1080/17460441.2024.2365370. Epub 2024 Jun 11.

Abstract

INTRODUCTION

Prostate cancer (PC) is the most common malignancy and accounts for a significant proportion of cancer deaths among men. Although initial therapy success can often be observed in patients diagnosed with localized PC, many patients eventually develop disease recurrence and metastasis. Without effective treatments, patients with aggressive PC display very poor survival. To curb the current high mortality rate, many investigations have been carried out to identify efficacious therapeutics. Compared to de novo drug designs, computational methods have been widely employed to offer actionable drug predictions in a fast and cost-efficient way. Particularly, powered by an increasing availability of next-generation sequencing molecular profiles from PC patients, computer-aided approaches can be tailored to screen for candidate drugs.

AREAS COVERED

Herein, the authors review the recent advances in computational methods for drug discovery utilizing molecular profiles from PC patients. Given the uniqueness in PC therapeutic needs, they discuss in detail the drug discovery goals of these studies, highlighting their translational values for clinically impactful drug nomination.

EXPERT OPINION

Evolving molecular profiling techniques may enable new perspectives for computer-aided approaches to offer drug candidates for different tumor microenvironments. With ongoing efforts to incorporate new compounds into large-scale high-throughput screens, the authors envision continued expansion of drug candidate pools.

摘要

简介

前列腺癌(PC)是最常见的恶性肿瘤,也是男性癌症死亡的主要原因之一。尽管局部 PC 患者的初始治疗效果通常较好,但许多患者最终仍会出现疾病复发和转移。对于侵袭性 PC 患者,如果没有有效的治疗方法,其生存状况非常差。为了降低目前的高死亡率,已经开展了许多研究来寻找有效的治疗方法。与从头设计药物相比,计算方法已被广泛用于快速、高效地提供可行的药物预测。特别是,随着 PC 患者的下一代测序分子谱的大量获得,计算机辅助方法可以针对候选药物进行筛选。

涵盖的领域

本文综述了利用 PC 患者的分子谱进行药物发现的计算方法的最新进展。鉴于 PC 治疗需求的独特性,本文详细讨论了这些研究的药物发现目标,突出了它们在有临床影响的药物提名方面的转化价值。

专家意见

不断发展的分子谱技术可能为计算机辅助方法提供针对不同肿瘤微环境的药物候选物提供新的视角。随着将新化合物纳入大规模高通量筛选的持续努力,作者设想候选药物库将继续扩大。

相似文献

10
Systemic treatments for metastatic cutaneous melanoma.转移性皮肤黑色素瘤的全身治疗
Cochrane Database Syst Rev. 2018 Feb 6;2(2):CD011123. doi: 10.1002/14651858.CD011123.pub2.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验