Suppr超能文献

融合孔通量控制量子突触反应的上升时间。

Fusion pore flux controls the rise-times of quantal synaptic responses.

机构信息

Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA.

出版信息

J Gen Physiol. 2024 Aug 5;156(8). doi: 10.1085/jgp.202313484. Epub 2024 Jun 11.

Abstract

The release of neurotransmitter from a single synaptic vesicle generates a quantal response, which at excitatory synapses in voltage-clamped neurons is referred to as a miniature excitatory postsynaptic current (mEPSC). We analyzed mEPSCs in cultured mouse hippocampal neurons and in HEK cells expressing postsynaptic proteins enabling them to receive synaptic inputs from cocultured neurons. mEPSC amplitudes and rise-times varied widely within and between cells. In neurons, mEPSCs with larger amplitudes had longer rise-times, and this correlation was stronger in neurons with longer mean rise-times. In HEK cells, this correlation was weak and unclear. Standard mechanisms thought to govern mEPSCs cannot account for these results. We therefore developed models to simulate mEPSCs and assess their dependence on different factors. Modeling indicated that longer diffusion times for transmitters released by larger vesicles to reach more distal receptors cannot account for the correlation between rise-time and amplitude. By contrast, incorporating the vesicle size dependence of fusion pore expulsion time recapitulated experimental results well. Larger vesicles produce mEPSCs with larger amplitudes and also take more time to lose their content. Thus, fusion pore flux directly contributes to mEPSC rise-time. Variations in fusion pores account for differences among neurons, between neurons and HEK cells, and the correlation between rise-time and the slope of rise-time versus amplitude plots. Plots of mEPSC amplitude versus rise-time are sensitive to otherwise inaccessible properties of a synapse and offer investigators a means of assessing the role of fusion pores in synaptic release.

摘要

从单个突触小泡中释放神经递质会产生量子反应,在电压钳制神经元中的兴奋性突触上,这种反应被称为微小兴奋性突触后电流(mEPSC)。我们分析了培养的小鼠海马神经元和表达使它们能够从共培养神经元接收突触输入的突触后蛋白的 HEK 细胞中的 mEPSC。mEPSC 的幅度和上升时间在细胞内和细胞间差异很大。在神经元中,幅度较大的 mEPSC 具有较长的上升时间,而在具有较长平均上升时间的神经元中,这种相关性更强。在 HEK 细胞中,这种相关性较弱且不明显。被认为控制 mEPSC 的标准机制无法解释这些结果。因此,我们开发了模拟 mEPSC 并评估其对不同因素依赖的模型。建模表明,较大囊泡释放的递质到达更远受体的扩散时间较长,不能解释上升时间与幅度之间的相关性。相比之下,融合孔排空时间的囊泡大小依赖性很好地再现了实验结果。较大的囊泡产生幅度较大的 mEPSC,并且也需要更长的时间来失去其内容物。因此,融合孔通量直接导致 mEPSC 的上升时间。融合孔的变化解释了神经元之间、神经元和 HEK 细胞之间以及上升时间与上升时间斜率与幅度关系图之间的差异。mEPSC 幅度与上升时间的关系图对突触的其他无法访问的特性敏感,并为研究人员提供了一种评估融合孔在突触释放中的作用的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b18a/11167452/a0bd26339833/JGP_202313484_Fig1.jpg

相似文献

1
Fusion pore flux controls the rise-times of quantal synaptic responses.
J Gen Physiol. 2024 Aug 5;156(8). doi: 10.1085/jgp.202313484. Epub 2024 Jun 11.
2
The Transmembrane Domain of Synaptobrevin Influences Neurotransmitter Flux through Synaptic Fusion Pores.
J Neurosci. 2018 Aug 8;38(32):7179-7191. doi: 10.1523/JNEUROSCI.0721-18.2018. Epub 2018 Jul 16.
4
The origin of quantal size variation: vesicular glutamate concentration plays a significant role.
J Neurosci. 2007 Mar 14;27(11):3046-56. doi: 10.1523/JNEUROSCI.4415-06.2007.
5
Properties of quantal transmission at CA1 synapses.
J Neurophysiol. 2004 Oct;92(4):2456-67. doi: 10.1152/jn.00258.2004. Epub 2004 Apr 28.
6
7
Sr2+ and quantal events at excitatory synapses between mouse hippocampal neurons in culture.
J Physiol. 1996 Aug 15;495 ( Pt 1)(Pt 1):113-25. doi: 10.1113/jphysiol.1996.sp021578.
8
SNARE force synchronizes synaptic vesicle fusion and controls the kinetics of quantal synaptic transmission.
J Neurosci. 2010 Aug 4;30(31):10272-81. doi: 10.1523/JNEUROSCI.1551-10.2010.
9
Divergent Synaptic Scaling of Miniature EPSCs following Activity Blockade in Dissociated Neuronal Cultures.
J Neurosci. 2020 May 20;40(21):4090-4102. doi: 10.1523/JNEUROSCI.1393-19.2020. Epub 2020 Apr 20.
10
Quantal analysis of EPSCs recorded from small numbers of synapses in hippocampal cultures.
J Neurophysiol. 1995 Mar;73(3):1145-56. doi: 10.1152/jn.1995.73.3.1145.

引用本文的文献

1
The impact of diffusion on receptor binding during synaptic transmission.
Biophys J. 2024 Sep 17;123(18):2969-2973. doi: 10.1016/j.bpj.2024.07.038. Epub 2024 Jul 31.

本文引用的文献

3
Asynchronous release sites align with NMDA receptors in mouse hippocampal synapses.
Nat Commun. 2021 Jan 29;12(1):677. doi: 10.1038/s41467-021-21004-x.
4
Counting the Number of Glutamate Molecules in Single Synaptic Vesicles.
J Am Chem Soc. 2019 Nov 6;141(44):17507-17511. doi: 10.1021/jacs.9b09414. Epub 2019 Oct 28.
5
The Transmembrane Domain of Synaptobrevin Influences Neurotransmitter Flux through Synaptic Fusion Pores.
J Neurosci. 2018 Aug 8;38(32):7179-7191. doi: 10.1523/JNEUROSCI.0721-18.2018. Epub 2018 Jul 16.
6
Dynamics and number of trans-SNARE complexes determine nascent fusion pore properties.
Nature. 2018 Feb 8;554(7691):260-263. doi: 10.1038/nature25481. Epub 2018 Jan 31.
7
Transcellular Nanoalignment of Synaptic Function.
Neuron. 2017 Nov 1;96(3):680-696. doi: 10.1016/j.neuron.2017.10.006.
8
Dilation of fusion pores by crowding of SNARE proteins.
Elife. 2017 Mar 27;6:e22964. doi: 10.7554/eLife.22964.
10
Fusion pores and their control of neurotransmitter and hormone release.
J Gen Physiol. 2017 Mar 6;149(3):301-322. doi: 10.1085/jgp.201611724. Epub 2017 Feb 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验