Suppr超能文献

用时间分辨荧光各向异性成像测量突触小间隙中的纳米尺度扩散及以外的扩散。

Nanoscale diffusion in the synaptic cleft and beyond measured with time-resolved fluorescence anisotropy imaging.

机构信息

Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK.

Institute of Neuroscience, University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia.

出版信息

Sci Rep. 2017 Feb 9;7:42022. doi: 10.1038/srep42022.

Abstract

Neural activity relies on molecular diffusion within nanoscopic spaces outside and inside nerve cells, such as synaptic clefts or dendritic spines. Measuring diffusion on this small scale in situ has not hitherto been possible, yet this knowledge is critical for understanding the dynamics of molecular events and electric currents that shape physiological signals throughout the brain. Here we advance time-resolved fluorescence anisotropy imaging combined with two-photon excitation microscopy to map nanoscale diffusivity in ex vivo brain slices. We find that in the brain interstitial gaps small molecules move on average ~30% slower than in a free medium whereas inside neuronal dendrites this retardation is ~70%. In the synaptic cleft free nanodiffusion is decelerated by ~46%. These quantities provide previously unattainable basic constrains for the receptor actions of released neurotransmitters, the electrical conductance of the brain interstitial space and the limiting rate of molecular interactions or conformational changes in the synaptic microenvironment.

摘要

神经活动依赖于纳米尺度的分子扩散,这些纳米尺度的空间存在于神经细胞内外,如突触间隙或树突棘。迄今为止,在原位测量这种小尺度的扩散尚未成为可能,但这些知识对于理解分子事件和电流的动力学至关重要,这些分子事件和电流构成了整个大脑中生理信号的基础。在这里,我们结合时间分辨荧光各向异性成像和双光子激发显微镜,来描绘离体脑切片中的纳米尺度扩散。我们发现,在大脑间质间隙中,小分子的平均扩散速度比在自由介质中慢约 30%,而在神经元树突内,这种延迟约为 70%。在突触间隙中,自由纳米扩散被减缓了约 46%。这些数量为已释放神经递质的受体作用、脑间质空间的电导率以及突触微环境中分子相互作用或构象变化的限制速率提供了以前无法获得的基本限制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23d8/5299514/6d15b0acebde/srep42022-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验