Suppr超能文献

1.5特斯拉磁共振成像上三维对比增强VIBE T1加权成像的分子印迹聚合物对检测小脑转移瘤(≤5毫米)的敏感性。

The sensitivity of MIPs of 3D contrast-enhanced VIBE T1-weighted imaging for the detection of small brain metastases (≤ 5 mm) on 1.5 tesla MRI.

作者信息

Parillo Marco, Vertulli Daniele, Vaccarino Federica, Mallio Carlo Augusto, Beomonte Zobel Bruno, Quattrocchi Carlo Cosimo

机构信息

Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, Rome, Italy.

Research Unit of Diagnostic Imaging and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, Rome, Italy.

出版信息

Neuroradiol J. 2024 Dec;37(6):744-750. doi: 10.1177/19714009241260802. Epub 2024 Jun 11.

Abstract

OBJECTIVES

To evaluate whether the use of Maximum Intensity Projection (MIP) images derived from contrast-enhanced 3D-T1-weighted volumetric interpolated breath-hold examination (VIBE) would allow more sensitive detection of small (≤5 mm) brain metastases (BM) compared with source as well as 2D-T1-weighted spin-echo (SE) images.

METHODS

We performed a single center retrospective study on subjects with BM who underwent 1.5 tesla brain magnetic resonance imaging. Two readers counted the number of small BM for each of the seven sets of contrast-enhanced images created: axial 2D-T1-weighted SE, 3D-T1-weighted VIBE, 2.5 mm-thick-MIP T1-weighted VIBE, and 5 mm-thick-MIP T1-weighted VIBE; sagittal 3D-T1-weighted VIBE, 2.5 mm-thick-MIP T1-weighted VIBE, and 5 mm-thick-MIP T1-weighted VIBE. Total number of lesions detected on each image type was compared. Sensitivity, the average rates of false negatives and false positives, and the mean discrepancy were evaluated.

RESULTS

A total of 403 small BM were identified in 49 patients. Significant differences were found: in the number of true positives and false negatives between the axial 2D-T1-weighted SE sequence and all other imaging techniques; in the number of false positives between the axial 2D-T1-weighted SE and the axial 3D-T1-weighted VIBE sequences. The two image types that combined offered the highest sensitivity were 2D-T1-weighted SE and axial 2.5 mm-thick-MIP T1-weighted VIBE. The axial 2D-T1-weighted SE sequence differed significantly in sensitivity from all other sequences.

CONCLUSION

MIP images did not show a significant difference in sensitivity for the detection of small BM compared with native images.

摘要

目的

评估与源图像以及二维T1加权自旋回波(SE)图像相比,使用对比增强三维T1加权容积内插屏气检查(VIBE)获得的最大强度投影(MIP)图像是否能更敏感地检测出小的(≤5毫米)脑转移瘤(BM)。

方法

我们对接受1.5特斯拉脑部磁共振成像的脑转移瘤患者进行了单中心回顾性研究。两名阅片者对创建的七组对比增强图像中的每组小BM数量进行计数:轴向二维T1加权SE、三维T1加权VIBE、2.5毫米厚MIP T1加权VIBE和5毫米厚MIP T1加权VIBE;矢状面三维T1加权VIBE、2.5毫米厚MIP T1加权VIBE和5毫米厚MIP T1加权VIBE。比较每种图像类型上检测到的病变总数。评估敏感性、假阴性和假阳性的平均率以及平均差异。

结果

49例患者中共识别出403个小BM。发现了显著差异:轴向二维T1加权SE序列与所有其他成像技术之间的真阳性和假阴性数量;轴向二维T1加权SE与轴向三维T1加权VIBE序列之间的假阳性数量。联合提供最高敏感性的两种图像类型是二维T1加权SE和轴向2.5毫米厚MIP T1加权VIBE。轴向二维T1加权SE序列的敏感性与所有其他序列有显著差异。

结论

与原始图像相比,MIP图像在检测小BM的敏感性方面没有显著差异。

相似文献

3
Deep Learning-Based Signal Amplification of T1-Weighted Single-Dose Images Improves Metastasis Detection in Brain MRI.
Invest Radiol. 2025 Aug 1;60(8):543-551. doi: 10.1097/RLI.0000000000001166. Epub 2025 Feb 18.
6
Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation.
Cochrane Database Syst Rev. 2018 Jan 22;1(1):CD011551. doi: 10.1002/14651858.CD011551.pub2.

引用本文的文献

1
Susceptibility-Weighted Imaging (SWI): Technical Aspects and Applications in Brain MRI for Neurodegenerative Disorders.
Bioengineering (Basel). 2025 Apr 29;12(5):473. doi: 10.3390/bioengineering12050473.

本文引用的文献

3
Artery of Huebner stroke chameleon presenting as central nervous system lymphoma: a case description.
Quant Imaging Med Surg. 2023 Nov 1;13(11):7646-7649. doi: 10.21037/qims-23-437. Epub 2023 Aug 21.
4
10
Brain Tumor-Enhancement Visualization and Morphometric Assessment: A Comparison of MPRAGE, SPACE, and VIBE MRI Techniques.
AJNR Am J Neuroradiol. 2019 Jul;40(7):1140-1148. doi: 10.3174/ajnr.A6096. Epub 2019 Jun 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验