iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal.
iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal; Champalimaud Research, Champalimaud Center for the Unknown, 1400-038 Lisbon, Portugal.
Curr Biol. 2024 Jul 8;34(13):2812-2830.e5. doi: 10.1016/j.cub.2024.05.021. Epub 2024 Jun 10.
During locomotion, most vertebrates-and invertebrates such as Drosophila melanogaster-are able to quickly adapt to terrain irregularities or avoid physical threats by integrating sensory information along with motor commands. Key to this adaptability are leg mechanosensory structures, which assist in motor coordination by transmitting external cues and proprioceptive information to motor centers in the central nervous system. Nevertheless, how different mechanosensory structures engage these locomotor centers remains poorly understood. Here, we tested the role of mechanosensory structures in movement initiation by optogenetically stimulating specific classes of leg sensory structures. We found that stimulation of leg mechanosensory bristles (MsBs) and the femoral chordotonal organ (ChO) is sufficient to initiate forward movement in immobile animals. While the stimulation of the ChO required brain centers to induce forward movement, unexpectedly, brief stimulation of leg MsBs triggered a fast response and sustained motor activity dependent only on the ventral nerve cord (VNC). Moreover, this leg-MsB-mediated movement lacked inter- and intra-leg coordination but preserved antagonistic muscle activity within joints. Finally, we show that leg-MsB activation mediates strong avoidance behavior away from the stimulus source, which is preserved even in the absence of a central brain. Overall, our data show that mechanosensory stimulation can elicit a fast motor response, independently of central brain commands, to evade potentially harmful stimuli. In addition, it sheds light on how specific sensory circuits modulate motor control, including initiation of movement, allowing a better understanding of how different levels of coordination are controlled by the VNC and central brain locomotor circuits.
在运动过程中,大多数脊椎动物和无脊椎动物(如黑腹果蝇)能够通过整合感觉信息和运动指令,快速适应地形不规则或避免身体威胁。这种适应性的关键是腿部机械感觉结构,它通过将外部线索和本体感觉信息传递到中枢神经系统的运动中枢,协助运动协调。然而,不同的机械感觉结构如何与这些运动中枢相互作用,仍然知之甚少。在这里,我们通过光遗传学刺激特定类型的腿部感觉结构来测试机械感觉结构在运动起始中的作用。我们发现,刺激腿部机械感觉刚毛(MsBs)和股骨弦索器官(ChO)足以在不动的动物中启动向前运动。虽然 ChO 的刺激需要大脑中枢来诱导向前运动,但出乎意料的是,腿部 MsBs 的短暂刺激会引发快速反应,并仅依赖于腹神经索(VNC)维持持续的运动活动。此外,这种腿部 MsB 介导的运动缺乏关节间和关节内的协调,但在关节内保留了拮抗肌肉活动。最后,我们表明腿部 MsB 激活介导了远离刺激源的强烈回避行为,即使在没有中央大脑的情况下也能保留。总的来说,我们的数据表明,机械感觉刺激可以引发快速的运动反应,而无需中央大脑命令,以逃避潜在的有害刺激。此外,它揭示了特定感觉回路如何调节运动控制,包括运动的启动,这有助于更好地理解不同层次的协调是如何由 VNC 和中央大脑运动回路控制的。