Suppr超能文献

一种用于预测细胞对电磁场反应的双域建模的边界元方法。

A boundary element method of bidomain modeling for predicting cellular responses to electromagnetic fields.

机构信息

Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, United States of America.

Dartmouth Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, United States of America.

出版信息

J Neural Eng. 2024 Jun 25;21(3). doi: 10.1088/1741-2552/ad5704.

Abstract

Commonly used cable equation approaches for simulating the effects of electromagnetic fields on excitable cells make several simplifying assumptions that could limit their predictive power. Bidomain or 'whole' finite element methods have been developed to fully couple cells and electric fields for more realistic neuron modeling. Here, we introduce a novel bidomain integral equation designed for determining the full electromagnetic coupling between stimulation devices and the intracellular, membrane, and extracellular regions of neurons.Our proposed boundary element formulation offers a solution to an integral equation that connects the device, tissue inhomogeneity, and cell membrane-induced E-fields. We solve this integral equation using first-order nodal elements and an unconditionally stable Crank-Nicholson time-stepping scheme. To validate and demonstrate our approach, we simulated cylindrical Hodgkin-Huxley axons and spherical cells in multiple brain stimulation scenarios.Comparison studies show that a boundary element approach produces accurate results for both electric and magnetic stimulation. Unlike bidomain finite element methods, the bidomain boundary element method does not require volume meshes containing features at multiple scales. As a result, modeling cells, or tightly packed populations of cells, with microscale features embedded in a macroscale head model, is simplified, and the relative placement of devices and cells can be varied without the need to generate a new mesh.Device-induced electromagnetic fields are commonly used to modulate brain activity for research and therapeutic applications. Bidomain solvers allow for the full incorporation of realistic cell geometries, device E-fields, and neuron populations. Thus, multi-cell studies of advanced neuronal mechanisms would greatly benefit from the development of fast-bidomain solvers to ensure scalability and the practical execution of neural network simulations with realistic neuron morphologies.

摘要

常用的模拟电磁场对可兴奋细胞影响的电缆方程方法做出了一些简化假设,这些假设可能会限制其预测能力。双域或“整体”有限元方法已经被开发出来,以更真实地对神经元建模,充分耦合细胞和电场。在这里,我们引入了一种新的双域积分方程,用于确定刺激设备与神经元的细胞内、膜内和细胞外区域之间的全电磁耦合。我们提出的边界元公式为连接设备、组织非均质性和细胞膜感应电场的积分方程提供了一个解决方案。我们使用一阶节点元素和无条件稳定的 Crank-Nicholson 时间步长方案来求解这个积分方程。为了验证和演示我们的方法,我们在多个脑刺激场景中模拟了圆柱形 Hodgkin-Huxley 轴突和球形细胞。对比研究表明,边界元方法对电刺激和磁刺激都能产生准确的结果。与双域有限元方法不同,双域边界元方法不需要包含多个尺度特征的体积网格。因此,简化了对具有微观特征的细胞或紧密排列的细胞群体进行建模,并且可以在不生成新网格的情况下改变设备和细胞的相对位置。设备感应的电磁场通常用于调节大脑活动,用于研究和治疗应用。双域求解器允许充分纳入现实的细胞几何形状、设备电场和神经元群体。因此,先进的神经元机制的多细胞研究将极大地受益于快速双域求解器的开发,以确保可扩展性和具有现实神经元形态的神经网络模拟的实际执行。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验