Weise Konstantin, Makaroff Sergey N, Numssen Ole, Bikson Marom, Knösche Thomas R
Leipzig University of Applied Sciences, Leipzig, Germany.
Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
bioRxiv. 2025 Feb 5:2024.10.25.619982. doi: 10.1101/2024.10.25.619982.
Notwithstanding advances in computational models of neuromodulation, there are mismatches between simulated and experimental activation thresholds. Transcranial Magnetic Stimulation (TMS) of the primary motor cortex generates motor evoked potentials (MEPs). At the threshold of MEP generation, whole-head models predict macroscopic (at millimeter scale) electric fields (50-70 V/m) which are considerably below conventionally simulated cortical neuron thresholds (175-350 V/m).
We hypothesize that this apparent contradiction is in part a consequence of electrical field warping by brain microstructure. Classical neuronal models ignore the physical presence of neighboring neurons and microstructure and assume that the macroscopic field directly acts on the neurons. In previous work, we performed advanced numerical calculations considering realistic microscopic compartments (e.g., cells, blood vessels), resulting in locally inhomogeneous (micrometer scale) electric field and altered neuronal activation thresholds. Here we combine detailed neural threshold simulations under homogeneous field assumptions with microscopic field calculations, leveraging a novel statistical approach.
We show that, provided brain-region specific microstructure metrics, a single statistically derived scaling factor between microscopic and macroscopic electric fields can be applied in predicting neuronal thresholds. For the cortical sample considered, the statistical methods match TMS experimental thresholds.
Our approach can be broadly applied to neuromodulation models, where fully coupled microstructure scale simulations may not be computationally tractable.
尽管神经调节计算模型取得了进展,但模拟的和实验的激活阈值之间仍存在不匹配。对初级运动皮层进行经颅磁刺激(TMS)可产生运动诱发电位(MEP)。在MEP产生的阈值处,全脑模型预测的宏观(毫米尺度)电场(50 - 70 V/m)远低于传统模拟的皮层神经元阈值(175 - 350 V/m)。
我们假设这种明显的矛盾部分是由于脑微结构导致的电场扭曲所致。经典神经元模型忽略了相邻神经元和微结构的物理存在,并假设宏观场直接作用于神经元。在之前的工作中,我们考虑了实际的微观区室(如细胞、血管)进行了先进的数值计算,结果得到了局部不均匀(微米尺度)的电场并改变了神经元激活阈值。在此,我们利用一种新颖的统计方法,将均匀场假设下的详细神经阈值模拟与微观场计算相结合。
我们表明,只要提供脑区特定的微结构指标,微观和宏观电场之间的单个统计推导比例因子就可用于预测神经元阈值。对于所考虑的皮层样本,统计方法与TMS实验阈值相符。
我们的方法可广泛应用于神经调节模型,在这些模型中,完全耦合的微结构尺度模拟在计算上可能难以处理。