Suppr超能文献

生成式人工智能对社会经济不平等和政策制定的影响。

The impact of generative artificial intelligence on socioeconomic inequalities and policy making.

作者信息

Capraro Valerio, Lentsch Austin, Acemoglu Daron, Akgun Selin, Akhmedova Aisel, Bilancini Ennio, Bonnefon Jean-François, Brañas-Garza Pablo, Butera Luigi, Douglas Karen M, Everett Jim A C, Gigerenzer Gerd, Greenhow Christine, Hashimoto Daniel A, Holt-Lunstad Julianne, Jetten Jolanda, Johnson Simon, Kunz Werner H, Longoni Chiara, Lunn Pete, Natale Simone, Paluch Stefanie, Rahwan Iyad, Selwyn Neil, Singh Vivek, Suri Siddharth, Sutcliffe Jennifer, Tomlinson Joe, van der Linden Sander, Van Lange Paul A M, Wall Friederike, Van Bavel Jay J, Viale Riccardo

机构信息

Department of Psychology, University of Milan-Bicocca, Milan 20126, Italy.

Department of Economics, MIT, Cambridge, MA 02142, USA.

出版信息

PNAS Nexus. 2024 Jun 11;3(6):pgae191. doi: 10.1093/pnasnexus/pgae191. eCollection 2024 Jun.

Abstract

Generative artificial intelligence (AI) has the potential to both exacerbate and ameliorate existing socioeconomic inequalities. In this article, we provide a state-of-the-art interdisciplinary overview of the potential impacts of generative AI on (mis)information and three information-intensive domains: work, education, and healthcare. Our goal is to highlight how generative AI could worsen existing inequalities while illuminating how AI may help mitigate pervasive social problems. In the domain, generative AI can democratize content creation and access but may dramatically expand the production and proliferation of misinformation. In the , it can boost productivity and create new jobs, but the benefits will likely be distributed unevenly. In , it offers personalized learning, but may widen the digital divide. In , it might improve diagnostics and accessibility, but could deepen pre-existing inequalities. In each section, we cover a specific topic, evaluate existing research, identify critical gaps, and recommend research directions, including explicit trade-offs that complicate the derivation of a priori hypotheses. We conclude with a section highlighting the role of policymaking to maximize generative AI's potential to reduce inequalities while mitigating its harmful effects. We discuss strengths and weaknesses of existing policy frameworks in the European Union, the United States, and the United Kingdom, observing that each fails to fully confront the socioeconomic challenges we have identified. We propose several concrete policies that could promote shared prosperity through the advancement of generative AI. This article emphasizes the need for interdisciplinary collaborations to understand and address the complex challenges of generative AI.

摘要

生成式人工智能(AI)有可能加剧和改善现有的社会经济不平等现象。在本文中,我们提供了一份关于生成式人工智能对(错误)信息以及三个信息密集型领域(工作、教育和医疗保健)潜在影响的跨学科综述。我们的目标是强调生成式人工智能如何可能加剧现有不平等现象,同时阐明人工智能如何有助于缓解普遍存在的社会问题。在内容创作领域,生成式人工智能可以使内容创作和获取民主化,但可能会大幅扩大错误信息的产生和传播。在工作领域,它可以提高生产力并创造新的就业机会,但好处可能分配不均。在教育领域,它提供个性化学习,但可能会扩大数字鸿沟。在医疗保健领域,它可能会改善诊断和可及性,但可能会加深现有的不平等现象。在每个部分,我们涵盖一个特定主题,评估现有研究,找出关键差距,并推荐研究方向,包括使先验假设推导复杂化的明确权衡。我们在结尾部分强调政策制定在最大化生成式人工智能减少不平等现象的潜力同时减轻其有害影响方面的作用。我们讨论了欧盟、美国和英国现有政策框架的优缺点,发现每个框架都未能充分应对我们所确定的社会经济挑战。我们提出了几项具体政策,这些政策可以通过推进生成式人工智能来促进共同繁荣。本文强调需要跨学科合作来理解和应对生成式人工智能带来的复杂挑战。

相似文献

引用本文的文献

本文引用的文献

2
Language-based game theory in the age of artificial intelligence.人工智能时代基于语言的博弈论。
J R Soc Interface. 2024 Mar;21(212):20230720. doi: 10.1098/rsif.2023.0720. Epub 2024 Mar 13.
3
A Turing test of whether AI chatbots are behaviorally similar to humans.人工智能聊天机器人是否在行为上与人类相似的图灵测试。
Proc Natl Acad Sci U S A. 2024 Feb 27;121(9):e2313925121. doi: 10.1073/pnas.2313925121. Epub 2024 Feb 22.
4
How persuasive is AI-generated propaganda?人工智能生成的宣传内容有多有说服力?
PNAS Nexus. 2024 Feb 20;3(2):pgae034. doi: 10.1093/pnasnexus/pgae034. eCollection 2024 Feb.
6
The count: an identity-based intervention to counter partisan misinformation sharing.计数:一种基于身份的干预措施,旨在抵制党派错误信息共享。
Philos Trans R Soc Lond B Biol Sci. 2024 Mar 11;379(1897):20230040. doi: 10.1098/rstb.2023.0040. Epub 2024 Jan 22.
7
The emergence of economic rationality of GPT.GPT 的经济理性的出现。
Proc Natl Acad Sci U S A. 2023 Dec 19;120(51):e2316205120. doi: 10.1073/pnas.2316205120. Epub 2023 Dec 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验