Maleki Varnosfaderani Shiva, Forouzanfar Mohamad
Department of Electrical Engineering, Wayne State University, Detroit, MI 48202, USA.
Département de Génie des Systèmes, École de Technologie Supérieure (ÉTS), Université du Québec, Montréal, QC H3C 1K3, Canada.
Bioengineering (Basel). 2024 Mar 29;11(4):337. doi: 10.3390/bioengineering11040337.
As healthcare systems around the world face challenges such as escalating costs, limited access, and growing demand for personalized care, artificial intelligence (AI) is emerging as a key force for transformation. This review is motivated by the urgent need to harness AI's potential to mitigate these issues and aims to critically assess AI's integration in different healthcare domains. We explore how AI empowers clinical decision-making, optimizes hospital operation and management, refines medical image analysis, and revolutionizes patient care and monitoring through AI-powered wearables. Through several case studies, we review how AI has transformed specific healthcare domains and discuss the remaining challenges and possible solutions. Additionally, we will discuss methodologies for assessing AI healthcare solutions, ethical challenges of AI deployment, and the importance of data privacy and bias mitigation for responsible technology use. By presenting a critical assessment of AI's transformative potential, this review equips researchers with a deeper understanding of AI's current and future impact on healthcare. It encourages an interdisciplinary dialogue between researchers, clinicians, and technologists to navigate the complexities of AI implementation, fostering the development of AI-driven solutions that prioritize ethical standards, equity, and a patient-centered approach.
随着全球医疗保健系统面临成本不断攀升、可及性有限以及对个性化医疗需求不断增长等挑战,人工智能(AI)正成为推动变革的关键力量。这篇综述的动机源于迫切需要利用人工智能的潜力来缓解这些问题,旨在批判性地评估人工智能在不同医疗领域的整合情况。我们探讨人工智能如何赋能临床决策、优化医院运营与管理、完善医学图像分析,以及通过人工智能驱动的可穿戴设备如何彻底改变患者护理和监测方式。通过几个案例研究,我们回顾了人工智能如何改变特定的医疗领域,并讨论了 remaining challenges and possible solutions。此外,我们还将讨论评估人工智能医疗保健解决方案的方法、人工智能部署的伦理挑战,以及数据隐私和减轻偏差对于负责任地使用技术的重要性。通过对人工智能变革潜力的批判性评估,这篇综述使研究人员更深入地了解人工智能对医疗保健当前和未来的影响。它鼓励研究人员、临床医生和技术专家之间进行跨学科对话,以应对人工智能实施的复杂性,促进以道德标准、公平性和以患者为中心的方法为优先的人工智能驱动解决方案的发展。
Bioengineering (Basel). 2024-3-29
J Multidiscip Healthc. 2024-8-15
Int J Gen Med. 2024-5-1
BMC Med Educ. 2023-9-22
Front Digit Health. 2025-8-18
World J Clin Oncol. 2025-8-24
Am J Emerg Med. 2024-2
J Educ Health Promot. 2023-9-29
Cell Rep Med. 2023-10-17
Annu Rev Pharmacol Toxicol. 2024-1-23
Breast Cancer Res. 2023-7-24