Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
Department of Industrial Chemistry, Pukyong National University, Busan 48513, Republic of Korea.
Lab Chip. 2024 Jun 25;24(13):3294-3304. doi: 10.1039/d4lc00234b.
On-demand drug delivery holds great promise to optimize pharmaceutical efficacy while minimizing the side effects. However, existing on-demand drug delivery systems often require complicated manufacturing processes that preclude their wide implementation of a broad range of drugs. In this work, we demonstrate the introduction of MXene-coated microneedles (MNs) into bioelectronics for digitally controllable gate-valve drug delivery. MXenes, featuring high electronic conductivity, excellent biocompatibility, and solution processibility, enable low-cost scalability for printable bioelectronics. In an electrolytic state (, body fluid), the coated MXene is oxidized and desorbed due to redox reactions caused by electrical bias, allowing the underlying drug to be controllably released. The MXene-incorporated drug delivery system not only demonstrates excellent biocompatibility and operational stability, but also features low-cost construction and sustainable usage. Besides, these MXene-coated MNs allow both on-demand transformation and local-region customization, further increasing the structural versatility and capability of multidrug delivery systems.
按需药物输送在优化药物疗效的同时最大限度地减少副作用方面具有巨大的潜力。然而,现有的按需药物输送系统通常需要复杂的制造工艺,这限制了它们在广泛的药物中的广泛应用。在这项工作中,我们展示了将涂覆 MXene 的微针 (MN) 引入生物电子学中,用于数字可控的栅极药物输送。MXenes 具有高导电性、优异的生物相容性和溶液加工性,为可印刷的生物电子学提供了低成本的可扩展性。在电解状态下(即体液),由于电偏置引起的氧化还原反应,涂覆的 MXene 被氧化和解吸,从而可以控制释放下面的药物。所采用的 MXene 药物输送系统不仅具有优异的生物相容性和操作稳定性,而且还具有低成本的结构和可持续使用的特点。此外,这些涂覆 MXene 的 MN 允许按需转换和局部区域定制,进一步增加了多药物输送系统的结构多功能性和能力。