Suppr超能文献

基于结构感知图神经网络和预训练语言模型的分泌系统效应蛋白特性分析。

Characterizing Secretion System Effector Proteins With Structure-Aware Graph Neural Networks and Pre-Trained Language Models.

出版信息

IEEE J Biomed Health Inform. 2024 Sep;28(9):5649-5657. doi: 10.1109/JBHI.2024.3413146. Epub 2024 Sep 5.

Abstract

The Type III Secretion Systems (T3SSs) play a pivotal role in host-pathogen interactions by mediating the secretion of type III secretion system effectors (T3SEs) into host cells. These T3SEs mimic host cell protein functions, influencing interactions between Gram-negative bacterial pathogens and their hosts. Identifying T3SEs is essential in biomedical research for comprehending bacterial pathogenesis and its implications on human cells. This study presents EDIFIER, a novel multi-channel model designed for accurate T3SE prediction. It incorporates a graph structural channel, utilizing graph convolutional networks (GCN) to capture protein 3D structural features and a sequence channel based on the ProteinBERT pre-trained model to extract the sequence context features of T3SEs. Rigorous benchmarking tests, including ablation studies and comparative analysis, validate that EDIFIER outperforms current state-of-the-art tools in T3SE prediction. To enhance EDIFIER's accessibility to the broader scientific community, we developed a webserver that is publicly accessible at http://edifier.unimelb-biotools.cloud.edu.au/. We anticipate EDIFIER will contribute to the field by providing reliable T3SE predictions, thereby advancing our understanding of host-pathogen dynamics.

摘要

III 型分泌系统(T3SSs)在宿主-病原体相互作用中起着关键作用,通过将 III 型分泌系统效应物(T3SEs)分泌到宿主细胞中来介导。这些 T3SEs 模拟宿主细胞蛋白的功能,影响革兰氏阴性细菌病原体与其宿主之间的相互作用。在生物医学研究中,鉴定 T3SEs 对于理解细菌发病机制及其对人类细胞的影响至关重要。本研究提出了 EDIFIER,这是一种用于准确预测 T3SE 的新型多通道模型。它包含一个图结构通道,利用图卷积网络(GCN)来捕获蛋白质 3D 结构特征,以及一个基于 ProteinBERT 预训练模型的序列通道,以提取 T3SE 的序列上下文特征。严格的基准测试,包括消融研究和比较分析,验证了 EDIFIER 在 T3SE 预测方面优于当前最先进的工具。为了增强 EDIFIER 对更广泛科学界的可访问性,我们开发了一个 Web 服务器,可在 http://edifier.unimelb-biotools.cloud.edu.au/ 上公开访问。我们预计 EDIFIER 将通过提供可靠的 T3SE 预测来为该领域做出贡献,从而增进我们对宿主-病原体动态的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验