Suppr超能文献

用于小动物模型中渐进式和可逆性主动脉缩窄的软体机器人平台。

Soft robotic platform for progressive and reversible aortic constriction in a small-animal model.

机构信息

Health Sciences and Technology Program, Harvard University - Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Sci Robot. 2024 Jun 12;9(91):eadj9769. doi: 10.1126/scirobotics.adj9769.

Abstract

Our understanding of cardiac remodeling processes due to left ventricular pressure overload derives largely from animal models of aortic banding. However, these studies fail to enable control over both disease progression and reversal, hindering their clinical relevance. Here, we describe a method for progressive and reversible aortic banding based on an implantable expandable actuator that can be finely tuned to modulate aortic banding and debanding in a rat model. Through catheterization, imaging, and histologic studies, we demonstrate that our platform can recapitulate the hemodynamic and structural changes associated with pressure overload in a controllable manner. We leveraged soft robotics to enable noninvasive aortic debanding, demonstrating that these changes can be partly reversed because of cessation of the biomechanical stimulus. By recapitulating longitudinal disease progression and reversibility, this animal model could elucidate fundamental mechanisms of cardiac remodeling and optimize timing of intervention for pressure overload.

摘要

我们对左心室压力超负荷导致的心脏重构过程的理解主要来自于主动脉缩窄的动物模型。然而,这些研究无法同时控制疾病的进展和逆转,从而降低了它们的临床相关性。在这里,我们描述了一种基于可植入式可膨胀执行器的渐进式和可逆性主动脉缩窄方法,该方法可以精细地调节主动脉缩窄和去缩窄,从而在大鼠模型中进行调节。通过导管插入术、成像和组织学研究,我们证明我们的平台可以以可控的方式再现与压力超负荷相关的血流动力学和结构变化。我们利用软机器人实现了非侵入性的主动脉去缩窄,证明由于停止生物力学刺激,这些变化可以部分逆转。通过再现纵向疾病进展和可逆性,这种动物模型可以阐明心脏重构的基本机制,并优化压力超负荷干预的时机。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验