Suppr超能文献

小胶质细胞促进小鼠脊髓损伤后自主神经回路的适应性不良重塑。

Microglia promote maladaptive plasticity in autonomic circuitry after spinal cord injury in mice.

机构信息

Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.

Belford Center for Spinal Cord Injury, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.

出版信息

Sci Transl Med. 2024 Jun 12;16(751):eadi3259. doi: 10.1126/scitranslmed.adi3259.

Abstract

Robust structural remodeling and synaptic plasticity occurs within spinal autonomic circuitry after severe high-level spinal cord injury (SCI). As a result, normally innocuous visceral or somatic stimuli elicit uncontrolled activation of spinal sympathetic reflexes that contribute to systemic disease and organ-specific pathology. How hyperexcitable sympathetic circuitry forms is unknown, but local cues from neighboring glia likely help mold these maladaptive neuronal networks. Here, we used a mouse model of SCI to show that microglia surrounded active glutamatergic interneurons and subsequently coordinated multi-segmental excitatory synaptogenesis and expansion of sympathetic networks that control immune, neuroendocrine, and cardiovascular functions. Depleting microglia during critical periods of circuit remodeling after SCI prevented maladaptive synaptic and structural plasticity in autonomic networks, decreased the frequency and severity of autonomic dysreflexia, and prevented SCI-induced immunosuppression. Forced turnover of microglia in microglia-depleted mice restored structural and functional indices of pathological dysautonomia, providing further evidence that microglia are key effectors of autonomic plasticity. Additional data show that microglia-dependent autonomic plasticity required expression of triggering receptor expressed on myeloid cells 2 (Trem2) and α2δ-1-dependent synaptogenesis. These data suggest that microglia are primary effectors of autonomic neuroplasticity and dysautonomia after SCI in mice. Manipulating microglia may be a strategy to limit autonomic complications after SCI or other forms of neurologic disease.

摘要

严重的高水平脊髓损伤 (SCI) 后,脊髓自主回路中会发生稳健的结构重塑和突触可塑性。因此,通常无害的内脏或躯体刺激会引发脊髓交感反射的不受控制激活,从而导致全身性疾病和特定器官的病理。过度兴奋的交感神经回路是如何形成的尚不清楚,但来自邻近胶质细胞的局部线索可能有助于塑造这些适应不良的神经元网络。在这里,我们使用 SCI 的小鼠模型表明,小胶质细胞包围活跃的谷氨酸能中间神经元,随后协调多节兴奋性突触发生和控制免疫、神经内分泌和心血管功能的交感神经网络的扩张。在 SCI 后回路重塑的关键时期耗竭小胶质细胞可防止自主网络的适应性突触和结构可塑性,减少自主反射异常的频率和严重程度,并预防 SCI 诱导的免疫抑制。在耗尽小胶质细胞的小鼠中强制小胶质细胞更替可恢复病理性自主神经功能障碍的结构和功能指数,进一步证明小胶质细胞是自主神经可塑性的关键效应物。其他数据表明,小胶质细胞依赖性自主神经可塑性需要髓样细胞表达的触发受体 2 (Trem2) 和 α2δ-1 依赖性突触发生。这些数据表明,小胶质细胞是 SCI 后小鼠自主神经可塑性和自主神经功能障碍的主要效应物。操纵小胶质细胞可能是限制 SCI 或其他形式的神经疾病后自主并发症的一种策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验