Suppr超能文献

胸段 VGluT2 脊髓中间神经元在后高颈段脊髓损伤后调节交感神经网络的结构和功能重塑。

Thoracic VGluT2 Spinal Interneurons Regulate Structural and Functional Plasticity of Sympathetic Networks after High-Level Spinal Cord Injury.

机构信息

Department of Neuroscience, Center for Brain and Spinal Cord Repair, Belford Center for Spinal Cord Injury, Wexner Medical Center, The Ohio State University, Columbus, Ohio 43210.

Center for Biostatistics, The Ohio State University, Columbus, Ohio 43210.

出版信息

J Neurosci. 2022 Apr 27;42(17):3659-3675. doi: 10.1523/JNEUROSCI.2134-21.2022. Epub 2022 Mar 18.

Abstract

Traumatic spinal cord injury (SCI) above the major spinal sympathetic outflow (T6 level) disinhibits sympathetic neurons from supraspinal control, causing systems-wide "dysautonomia." We recently showed that remarkable structural remodeling and plasticity occurs within spinal sympathetic circuitry, creating abnormal sympathetic reflexes that exacerbate dysautonomia over time. As an example, thoracic VGluT2 spinal interneurons (SpINs) become structurally and functionally integrated with neurons that comprise the spinal-splenic sympathetic network and immunological dysfunction becomes progressively worse after SCI. To test whether the onset and progression of SCI-induced sympathetic plasticity is neuron activity dependent, we selectively inhibited (or excited) thoracic VGluT2 interneurons using chemogenetics. New data show that silencing VGluT2 interneurons in female and male mice with a T3 SCI, using hM4Di designer receptors exclusively activated by designer drugs (G DREADDs), blocks structural plasticity and the development of dysautonomia. Specifically, silencing VGluT2 interneurons prevents the structural remodeling of spinal sympathetic networks that project to lymphoid and endocrine organs, reduces the frequency of spontaneous autonomic dysreflexia (AD), and reduces the severity of experimentally induced AD. Features of SCI-induced structural plasticity can be recapitulated in the intact spinal cord by activating excitatory hM3Dq-DREADDs in VGluT2 interneurons. Collectively, these data implicate VGluT2 excitatory SpINs in the onset and propagation of SCI-induced structural plasticity and dysautonomia, and reveal the potential for neuromodulation to block or reduce dysautonomia after severe high-level SCI. In response to stress or dangerous stimuli, autonomic spinal neurons coordinate a "fight or flight" response marked by increased cardiac output and release of stress hormones. After a spinal cord injury (SCI), normally harmless stimuli like bladder filling can result in a "false" fight or flight response, causing pathological changes throughout the body. We show that progressive hypertension and immune suppression develop after SCI because thoracic excitatory VGluT2 spinal interneurons (SpINs) provoke structural remodeling in autonomic networks within below-lesion spinal levels. These pathological changes can be prevented in SCI mice or phenocopied in uninjured mice using chemogenetics to selectively manipulate activity in VGluT2 SpINs. Targeted neuromodulation of SpINs could prevent structural plasticity and subsequent autonomic dysfunction in people with SCI.

摘要

创伤性脊髓损伤(SCI)位于主要脊髓交感传出(T6 水平)上方,会使来自中枢神经系统的交感神经元失去抑制,导致全身“自主神经功能障碍”。我们最近发现,脊髓交感神经回路内发生了显著的结构重塑和可塑性,产生了异常的交感反射,随着时间的推移,自主神经功能障碍会逐渐加重。例如,胸段 VGluT2 脊髓中间神经元(SpINs)与构成脊髓-脾脏交感神经网络的神经元在结构和功能上整合在一起,SCI 后免疫功能障碍逐渐恶化。为了测试 SCI 诱导的交感神经可塑性的发生和进展是否依赖于神经元活动,我们使用化学遗传学选择性抑制(或兴奋)胸段 VGluT2 中间神经元。新数据表明,使用专门由设计药物激活的 hM4Di 设计受体(G DREADDs),在 T3 SCI 的雌性和雄性小鼠中沉默 VGluT2 中间神经元,可以阻断结构可塑性的发生和自主神经功能障碍的发展。具体而言,沉默 VGluT2 中间神经元可防止投射到淋巴器官和内分泌器官的脊髓交感神经网络的结构重塑,降低自发性自主反射异常(AD)的频率,并减轻实验性 AD 的严重程度。通过在 VGluT2 中间神经元中激活兴奋性 hM3Dq-DREADDs,可以在完整的脊髓中再现 SCI 诱导的结构可塑性的特征。这些数据共同表明,VGluT2 兴奋性 SpINs 参与了 SCI 诱导的结构可塑性和自主神经功能障碍的发生和传播,并揭示了神经调节的潜力,可以在严重高位 SCI 后阻断或减轻自主神经功能障碍。在应激或危险刺激下,自主脊髓神经元协调以增加心输出量和释放应激激素为标志的“战斗或逃跑”反应。脊髓损伤(SCI)后,像膀胱充盈这样通常无害的刺激会导致“虚假”的战斗或逃跑反应,导致全身发生病理性变化。我们发现,SCI 后会逐渐出现高血压和免疫抑制,因为胸段兴奋性 VGluT2 脊髓中间神经元(SpINs)会引起损伤以下脊髓水平自主神经网络的结构重塑。在 SCI 小鼠中使用化学遗传学选择性地操纵 VGluT2 SpINs 的活动,可以预防这些病理性变化,或在未受伤的小鼠中模拟这些变化。靶向 SpINs 的神经调节可能会预防 SCI 患者的结构重塑和随后的自主神经功能障碍。

相似文献

引用本文的文献

9
Neuroplasticity and regeneration after spinal cord injury.脊髓损伤后的神经可塑性与再生
N Am Spine Soc J. 2023 Jun 8;15:100235. doi: 10.1016/j.xnsj.2023.100235. eCollection 2023 Sep.

本文引用的文献

5
Spinal cord injury causes chronic bone marrow failure.脊髓损伤导致慢性骨髓衰竭。
Nat Commun. 2020 Jul 24;11(1):3702. doi: 10.1038/s41467-020-17564-z.
6
Cell type prioritization in single-cell data.单细胞数据中的细胞类型优先级。
Nat Biotechnol. 2021 Jan;39(1):30-34. doi: 10.1038/s41587-020-0605-1. Epub 2020 Jul 20.
9
The mammalian spinal commissural system: properties and functions.哺乳动物的脊髓连合系统:特性与功能。
J Neurophysiol. 2020 Jan 1;123(1):4-21. doi: 10.1152/jn.00347.2019. Epub 2019 Nov 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验