Suppr超能文献

基于有理正弦-戈登展开法的三维分数阶WBBM方程水波现象的动力学行为

Dynamical behavior of water wave phenomena for the 3D fractional WBBM equations using rational sine-Gordon expansion method.

作者信息

Mamun Abdulla-Al-, Lu Chunhui, Ananna Samsun Nahar, Uddin Md Mohi

机构信息

College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, People's Republic of China.

State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, People's Republic of China.

出版信息

Sci Rep. 2024 Mar 18;14(1):6455. doi: 10.1038/s41598-024-55215-1.

Abstract

To examine the dynamical behavior of travelling wave solutions of the water wave phenomenon for the family of 3D fractional Wazwaz-Benjamin-Bona-Mahony (WBBM) equations, this work employs the rational Sine-Gordon expansion (RSGE) approach based on the conformable fractional derivative. The method generalizes the well-known sine-Gordon expansion using the sine-Gordon equation as an auxiliary equation. In contrast to the conventional sine-Gordon expansion method, it takes a more general approach, a rational function rather than a polynomial one of the solutions of the auxiliary equation. The method described above is used to generate various solutions of the WBBM equations for hyperbolic functions, including soliton, singular soliton, multiple-soliton, kink, cusp, lump-kink, kink double-soliton, etc. The RSGE method contributes to our understanding of nonlinear phenomena, provides exact solutions to nonlinear equations, aids in studying solitons, advances mathematical techniques, and finds applications in various scientific and engineering disciplines. The answers are graphically shown in three-dimensional (3D) surface plots and contour plots using the MATLAB program. The resolutions of the equation, which have appropriate parameters, exhibit the absolute wave configurations in all screens. Furthermore, it can be inferred that the physical characteristics of the discovered solutions and their features may aid in our understanding of the propagation of shallow water waves in nonlinear dynamics.

摘要

为了研究三维分数阶瓦兹瓦兹 - 本杰明 - 博纳 - 马奥尼(WBBM)方程组水波现象行波解的动力学行为,本文采用基于共形分数阶导数的有理正弦 - 戈登展开(RSGE)方法。该方法以正弦 - 戈登方程为辅助方程,推广了著名的正弦 - 戈登展开。与传统的正弦 - 戈登展开方法不同,它采用了一种更通用的方法,即辅助方程的解为有理函数而非多项式函数。上述方法用于生成WBBM方程组关于双曲函数的各种解,包括孤子、奇异孤子、多孤子、扭结、尖点、团块 - 扭结、扭结双孤子等。RSGE方法有助于我们理解非线性现象,为非线性方程提供精确解,有助于研究孤子,推动数学技术发展,并在各种科学和工程学科中找到应用。使用MATLAB程序将答案以三维(3D)表面图和等高线图的形式直观展示。具有适当参数的方程解在所有屏幕上展示了绝对波形态。此外,可以推断出所发现解的物理特性及其特征可能有助于我们理解非线性动力学中浅水波的传播。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a552/10948804/8ebaa4006d7d/41598_2024_55215_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验