Khan M Atta Ullah, Sadaf Maasoomah, Akram Ghazala, Birhanu Asnake, Rehan Kashif, Hamed Y S
Department of Mathematics, University of the Punjab, Lahore, 54590, Pakistan.
Department of Mathematics, College of Science, Hawassa University, Hawassa, Ethiopia.
Sci Rep. 2024 Sep 20;14(1):21949. doi: 10.1038/s41598-024-72571-0.
The captivating realm of the nonlinear coupled Davey-Stewartson Fokas system is explored in this research paper. As a powerful tool, the proposed system is utilized for the realistic representation of various non-linear dynamical mechanisms in different fields of sciences and engineering including non-linear optical fibers, plasma physics and water waves theory. Two distinct exact methods, namely the modified auxiliary equation method and the extended -expansion method, are utilized to acquire the exact soliton solutions of the non-linear coupled Davey-Stewartson Fokas system. A plethora of novel soliton solutions containing anti-kink, kink, bright, dark, dark-bright, bright-dark and some other singular soliton solutions, have been obtained using the employed exact methods. The significance of proposed manuscript lies in the novelty of obtained solutions. Kink, dark and bright solitons have wide applications in optical fiber communications, plasma physics and water waves dynamics. The acquired nontrivial exact solutions contain exponential, trigonometric, rational and hyperbolic functions. Some obtained solutions are visually represented through graphical simulations of 3D, 2D-contour and 2D-line plots, providing a comprehensive visualization of the soliton dynamics.The modulation instability of the proposed nonlinear system has been investigated, which ensures the stability of the system.
本研究论文探讨了非线性耦合戴维-斯图尔特森-福卡斯系统的迷人领域。作为一种强大的工具,所提出的系统被用于在包括非线性光纤、等离子体物理和水波理论在内的不同科学和工程领域中逼真地描述各种非线性动力学机制。利用两种不同的精确方法,即改进的辅助方程法和扩展的 - 展开法,来获取非线性耦合戴维-斯图尔特森-福卡斯系统的精确孤子解。使用所采用的精确方法已经获得了大量新颖的孤子解,包括反扭结、扭结、亮、暗、暗 - 亮、亮 - 暗以及一些其他奇异孤子解。所提出手稿的意义在于所获得解的新颖性。扭结、暗孤子和亮孤子在光纤通信、等离子体物理和水波动力学中具有广泛的应用。所获得的非平凡精确解包含指数函数、三角函数、有理函数和双曲函数。通过三维、二维等高线和二维线图的图形模拟直观地表示了一些获得的解,提供了孤子动力学的全面可视化。研究了所提出非线性系统的调制不稳定性,这确保了系统的稳定性。