Suppr超能文献

使用重新下降M估计器在存在异常值的情况下提高性能。

Enhancing performance in the presence of outliers with redescending M-estimators.

作者信息

Raza Aamir, Talib Mashal, Noor-Ul-Amin Muhammad, Gunaime Nevine, Boukhris Imed, Nabi Muhammad

机构信息

Govt. College Women University Sialkot, Sialkot, Pakistan.

COMSATS University Islamabad-Lahore Campus, Lahore, Pakistan.

出版信息

Sci Rep. 2024 Jun 12;14(1):13529. doi: 10.1038/s41598-024-64239-6.

Abstract

In real-life situations, we have to analyze the data that contains the atypical observations, and the presence of outliers has adverse effects on the performance of ordinary least square estimates. In this situation, redescedning M-estimators, proposed by Huber (1964), are used to tackle the effects of outliers to increase the efficiency of least square estimates. In this study, we introduce a redescending M-estimator designed to generate robust estimates by mitigating the influence of outlier observations, even when the tuning constant is set to low values. This innovative estimator exhibits enhanced linearity at its core and maintains continuity throughout its range. Our proposed estimator stands out for its novelty, simplicity, differentiability, and practical applicability across real-world scenarios. The results of the proposed redescedning M-estimators are compared with existing robust estimators using an extensive simulation study. Two examples based on real-life data are also added to validate the performance of the suggested function. The formulated redescedning M-estimator produced efficient results as compared to all the considered redescedning M-estimators.

摘要

在实际情况中,我们必须分析包含非典型观测值的数据,而异常值的存在会对普通最小二乘估计的性能产生不利影响。在这种情况下,由休伯(1964年)提出的重新下降M估计量被用于应对异常值的影响,以提高最小二乘估计的效率。在本研究中,我们引入了一种重新下降M估计量,旨在通过减轻异常观测值的影响来生成稳健估计,即使调整常数设置为低值时也是如此。这种创新的估计量在其核心处表现出增强的线性,并在其整个范围内保持连续性。我们提出的估计量因其新颖性、简单性、可微性以及在现实世界场景中的实际适用性而脱颖而出。使用广泛的模拟研究将所提出的重新下降M估计量的结果与现有的稳健估计量进行了比较。还添加了两个基于实际数据的示例来验证所建议函数的性能。与所有考虑的重新下降M估计量相比,所制定的重新下降M估计量产生了有效的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9b1/11169389/6b97e1ba7047/41598_2024_64239_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验