Rendón-Castro Ángel Arturo, Mújica-Vargas Dante, Luna-Álvarez Antonio, Vianney Kinani Jean Marie
Department of Computer Science, Tecnológico Nacional de México/CENIDET, Interior Internado Palmira S/N, Palmira, Cuernavaca 62490, Mexico.
Unidad Profesional Interdiciplinaria de Ingeniería Campus Hidalgo, Instituto Politécnico Nacional, Pachuca 07738, Mexico.
Entropy (Basel). 2023 Aug 7;25(8):1176. doi: 10.3390/e25081176.
In the field of image processing, noise represents an unwanted component that can occur during signal acquisition, transmission, and storage. In this paper, we introduce an efficient method that incorporates redescending M-estimators within the framework of Wiener estimation. The proposed approach effectively suppresses impulsive, additive, and multiplicative noise across varied densities. Our proposed filter operates on both grayscale and color images; it uses local information obtained from the Wiener filter and robust outlier rejection based on Insha and Hampel's tripartite redescending influence functions. The effectiveness of the proposed method is verified through qualitative and quantitative results, using metrics such as PSNR, MAE, and SSIM.
在图像处理领域,噪声是指在信号采集、传输和存储过程中出现的不需要的成分。在本文中,我们介绍了一种高效的方法,该方法将重新降序M估计器纳入维纳估计框架。所提出的方法能有效抑制各种密度下的脉冲噪声、加性噪声和乘性噪声。我们提出的滤波器可对灰度图像和彩色图像进行处理;它利用从维纳滤波器获得的局部信息以及基于因沙(Insha)和汉佩尔(Hampel)三方重新降序影响函数的稳健异常值剔除方法。使用峰值信噪比(PSNR)、平均绝对误差(MAE)和结构相似性指数(SSIM)等指标,通过定性和定量结果验证了所提方法的有效性。