Suppr超能文献

通过使用重降M估计器进行稳健噪声滤波来提高图像质量。

Enhancing Image Quality via Robust Noise Filtering Using Redescending M-Estimators.

作者信息

Rendón-Castro Ángel Arturo, Mújica-Vargas Dante, Luna-Álvarez Antonio, Vianney Kinani Jean Marie

机构信息

Department of Computer Science, Tecnológico Nacional de México/CENIDET, Interior Internado Palmira S/N, Palmira, Cuernavaca 62490, Mexico.

Unidad Profesional Interdiciplinaria de Ingeniería Campus Hidalgo, Instituto Politécnico Nacional, Pachuca 07738, Mexico.

出版信息

Entropy (Basel). 2023 Aug 7;25(8):1176. doi: 10.3390/e25081176.

Abstract

In the field of image processing, noise represents an unwanted component that can occur during signal acquisition, transmission, and storage. In this paper, we introduce an efficient method that incorporates redescending M-estimators within the framework of Wiener estimation. The proposed approach effectively suppresses impulsive, additive, and multiplicative noise across varied densities. Our proposed filter operates on both grayscale and color images; it uses local information obtained from the Wiener filter and robust outlier rejection based on Insha and Hampel's tripartite redescending influence functions. The effectiveness of the proposed method is verified through qualitative and quantitative results, using metrics such as PSNR, MAE, and SSIM.

摘要

在图像处理领域,噪声是指在信号采集、传输和存储过程中出现的不需要的成分。在本文中,我们介绍了一种高效的方法,该方法将重新降序M估计器纳入维纳估计框架。所提出的方法能有效抑制各种密度下的脉冲噪声、加性噪声和乘性噪声。我们提出的滤波器可对灰度图像和彩色图像进行处理;它利用从维纳滤波器获得的局部信息以及基于因沙(Insha)和汉佩尔(Hampel)三方重新降序影响函数的稳健异常值剔除方法。使用峰值信噪比(PSNR)、平均绝对误差(MAE)和结构相似性指数(SSIM)等指标,通过定性和定量结果验证了所提方法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0e2/10453315/36631c55bccb/entropy-25-01176-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验