Suppr超能文献

用于高性能电化学赝电容器的负载于CF/CuO纳米线上的Ni-Mn@ZIFs(Co·ZnO)二元金属有机框架的制备

Fabrication of binary metal-organic frameworks of Ni-Mn@ZIFs(Co·ZnO) decorated on CF/CuO nanowire for high-performance electrochemical pseudocapacitors.

作者信息

Momeni Abkharaki Ali, Ensafi Ali A

机构信息

Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran.

Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA.

出版信息

Sci Rep. 2024 Jun 12;14(1):13482. doi: 10.1038/s41598-024-64307-x.

Abstract

Herein, metal-organic frameworks (MOFs) derived nanoflower-like based binary transition metal (Ni-Mn) are successfully fabricated by a simple synthesis method. The fabricated nanoflower-like structure displays a unique nanoflower-like architecture and internal porous channels constructed by MOF coated on CuO/CF/ZIFs (Co·ZnO) substrate, which is beneficial for the penetration of electrolyte and electron/ion transportation. The as-prepared CF/CuO/ZIFs (Co·ZnO)@BMOF(Ni-Mn) electrode materials present significant synergy among transition metal ions, contributing to enhanced electrochemical performances. The as-prepared CF/CuO/ZIFs (Co·ZnO)@BMOF(Ni-Mn) hybrid nanoflower-like display a high specific capacity of 1249.99 C g at 1 A g and the specific capacitance retention is about 91.74% after 5000 cycles. In addition, the as-assembled CF/CuO/ZIFs (Co·ZnO)@BMOF(Ni-Mn)//AC asymmetric supercapacitor (ASC) device exhibited a maximum energy density of 21.77 Wh·kg at a power density of 799 W kg, and the capacity retention rate after 5000 charge and discharge cycles was 88.52%.

摘要

在此,通过一种简单的合成方法成功制备了基于金属有机框架(MOF)衍生的类纳米花状二元过渡金属(Ni-Mn)。所制备的类纳米花状结构呈现出独特的类纳米花状架构以及由涂覆在CuO/CF/ZIFs(Co·ZnO)基底上的MOF构建的内部多孔通道,这有利于电解质的渗透以及电子/离子传输。所制备的CF/CuO/ZIFs(Co·ZnO)@BMOF(Ni-Mn)电极材料在过渡金属离子之间呈现出显著的协同作用,有助于提高电化学性能。所制备的CF/CuO/ZIFs(Co·ZnO)@BMOF(Ni-Mn)类纳米花状杂化物在1 A g下显示出1249.99 C g的高比容量,并且在5000次循环后比电容保持率约为91.74%。此外,所组装的CF/CuO/ZIFs(Co·ZnO)@BMOF(Ni-Mn)//AC不对称超级电容器(ASC)器件在功率密度为799 W kg时表现出21.77 Wh·kg的最大能量密度,并且在5000次充放电循环后的容量保持率为88.52%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d3b/11169229/1a0edcc97fc7/41598_2024_64307_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验