Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA.
Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
Nature. 2024 Jun;630(8017):752-761. doi: 10.1038/s41586-024-07532-8. Epub 2024 Jun 12.
Mutations accumulate in the genome of every cell of the body throughout life, causing cancer and other diseases. Most mutations begin as nucleotide mismatches or damage in one of the two strands of the DNA before becoming double-strand mutations if unrepaired or misrepaired. However, current DNA-sequencing technologies cannot accurately resolve these initial single-strand events. Here we develop a single-molecule, long-read sequencing method (Hairpin Duplex Enhanced Fidelity sequencing (HiDEF-seq)) that achieves single-molecule fidelity for base substitutions when present in either one or both DNA strands. HiDEF-seq also detects cytosine deamination-a common type of DNA damage-with single-molecule fidelity. We profiled 134 samples from diverse tissues, including from individuals with cancer predisposition syndromes, and derive from them single-strand mismatch and damage signatures. We find correspondences between these single-strand signatures and known double-strand mutational signatures, which resolves the identity of the initiating lesions. Tumours deficient in both mismatch repair and replicative polymerase proofreading show distinct single-strand mismatch patterns compared to samples that are deficient in only polymerase proofreading. We also define a single-strand damage signature for APOBEC3A. In the mitochondrial genome, our findings support a mutagenic mechanism occurring primarily during replication. As double-strand DNA mutations are only the end point of the mutation process, our approach to detect the initiating single-strand events at single-molecule resolution will enable studies of how mutations arise in a variety of contexts, especially in cancer and ageing.
基因突变在人体每个细胞的基因组中积累,导致癌症和其他疾病。大多数突变最初是在 DNA 两条链中的一条链上发生核苷酸错配或损伤,如果未修复或错误修复,就会变成双链突变。然而,目前的 DNA 测序技术无法准确解析这些初始的单链事件。在这里,我们开发了一种单分子、长读测序方法(发夹双链增强保真度测序(HiDEF-seq)),当碱基替换存在于一条或两条 DNA 链中时,该方法能够实现单分子保真度。HiDEF-seq 还能以单分子保真度检测胞嘧啶脱氨——一种常见的 DNA 损伤类型。我们对来自不同组织的 134 个样本进行了分析,包括有癌症易感性综合征的个体,并从中获得了单链错配和损伤特征。我们发现这些单链特征与已知的双链突变特征之间存在对应关系,从而确定了起始病变的身份。与仅缺乏聚合酶校对的样本相比,同时缺乏错配修复和复制聚合酶校对的肿瘤显示出明显不同的单链错配模式。我们还为 APOBEC3A 定义了一个单链损伤特征。在线粒体基因组中,我们的发现支持了一种主要发生在复制过程中的诱变机制。由于双链 DNA 突变只是突变过程的终点,我们以单分子分辨率检测起始单链事件的方法将能够研究突变在各种情况下(尤其是在癌症和衰老中)是如何发生的。