Suppr超能文献

通过敏感属性预测器进行均衡赔率的估计与控制。

Estimating and Controlling for Equalized Odds via Sensitive Attribute Predictors.

作者信息

Bharti Beepul, Yi Paul, Sulam Jeremias

机构信息

Johns Hopkins University.

University of Maryland.

出版信息

Adv Neural Inf Process Syst. 2023 Dec;36:37173-37192.

Abstract

As the use of machine learning models in real world high-stakes decision settings continues to grow, it is highly important that we are able to audit and control for any potential fairness violations these models may exhibit towards certain groups. To do so, one naturally requires access to sensitive attributes, such as demographics, biological sex, or other potentially sensitive features that determine group membership. Unfortunately, in many settings, this information is often unavailable. In this work we study the well (EOD) definition of fairness. In a setting without sensitive attributes, we first provide tight and computable upper bounds for the EOD violation of a predictor. These bounds precisely reflect the worst possible EOD violation. Second, we demonstrate how one can provably control the worst-case EOD by a new post-processing correction method. Our results characterize when directly controlling for EOD with respect to the predicted sensitive attributes is - and when is not - optimal when it comes to controlling worst-case EOD. Our results hold under assumptions that are milder than previous works, and we illustrate these results with experiments on synthetic and real datasets.

摘要

随着机器学习模型在现实世界高风险决策场景中的应用不断增加,我们能够对这些模型可能对某些群体表现出的任何潜在公平性违规行为进行审计和控制变得至关重要。为此,自然需要获取敏感属性,如人口统计学特征、生物性别或其他决定群体成员身份的潜在敏感特征。不幸的是,在许多情况下,这些信息往往无法获得。在这项工作中,我们研究了公平性的平等机会差异(EOD)定义。在没有敏感属性的情况下,我们首先为预测器的EOD违规提供了紧密且可计算的上限。这些界限精确反映了可能出现的最严重的EOD违规情况。其次,我们展示了如何通过一种新的后处理校正方法来可证明地控制最坏情况的EOD。我们的结果刻画了在控制最坏情况的EOD时,直接针对预测的敏感属性控制EOD何时是最优的,何时不是最优的。我们的结果在比以前的工作更温和的假设下成立,并且我们通过对合成数据集和真实数据集的实验来说明这些结果。

相似文献

3
5
Learning Fair Representations via Distance Correlation Minimization.通过最小化距离相关性学习公平表示。
IEEE Trans Neural Netw Learn Syst. 2024 Feb;35(2):2139-2152. doi: 10.1109/TNNLS.2022.3187165. Epub 2024 Feb 5.
6
Analyzing the Impact of Personalization on Fairness in Federated Learning for Healthcare.分析个性化对医疗保健联邦学习公平性的影响。
J Healthc Inform Res. 2024 Mar 23;8(2):181-205. doi: 10.1007/s41666-024-00164-7. eCollection 2024 Jun.
7
: counterfactual explanations for fairness.公平性的反事实解释
Mach Learn. 2023 Mar 28:1-32. doi: 10.1007/s10994-023-06319-8.
9
Ensuring generalized fairness in batch classification.确保批量分类中的广义公平性。
Sci Rep. 2023 Nov 2;13(1):18892. doi: 10.1038/s41598-023-45943-1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验