Suppr超能文献

自适应最佳子集选择算法和遗传算法辅助的集成学习方法确定了新冠肺炎患者的稳健严重程度评分。

Adaptive best subset selection algorithm and genetic algorithm aided ensemble learning method identified a robust severity score of COVID-19 patients.

作者信息

Kong Weikaixin, Zhu Jie, Bi Suzhen, Huang Liting, Wu Peng, Zhu Su-Jie

机构信息

Institute for Molecular Medicine Finland (FIMM), HiLIFE University of Helsinki Helsinki Finland.

Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine Qingdao University Qingdao China.

出版信息

Imeta. 2023 Jul 4;2(3):e126. doi: 10.1002/imt2.126. eCollection 2023 Aug.

Abstract

We used an integrated ensemble learning method to build a stable prediction model for severity in COVID-19 patients, which was validated in multicenter cohorts.

摘要

我们采用了一种集成的集成学习方法来构建针对新冠肺炎患者病情严重程度的稳定预测模型,该模型在多中心队列中得到了验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e04/10989835/3f915f077bde/IMT2-2-e126-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验