Suppr超能文献

一种基于神经网络的框架,用于理解2型糖尿病相关的人类肠道微生物群改变。

A neural network-based framework to understand the type 2 diabetes-related alteration of the human gut microbiome.

作者信息

Guo Shun, Zhang Haoran, Chu Yunmeng, Jiang Qingshan, Ma Yingfei

机构信息

Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen Guangdong China.

Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen Guangdong China.

出版信息

Imeta. 2022 May 5;1(2):e20. doi: 10.1002/imt2.20. eCollection 2022 Jun.

Abstract

The identification of microbial markers adequate to delineate the disease-related microbiome alterations from the complex human gut microbiota is of great interest. Here, we develop a framework combining neural network (NN) and random forest, resulting in 40 marker species and 90 marker genes identified from the metagenomic data set (185 healthy and 183 type 2 diabetes [T2D] samples), respectively. In terms of these markers, the NN model obtained higher accuracy in classifying the T2D-related samples than other methods; the interaction network analyses identified the key species and functional modules; the regression analysis determined that fasting blood glucose is the most significant factor ( < 0.05) in the T2D-related alteration of the human gut microbiome. We also observed that those marker species varied little across the case and control samples greatly shift in the different stages of the T2D development, suggestive of their important roles in the T2D-related microbiome alteration. Our study provides a new way of identifying the disease-related biomarkers and analyzing the role they may play in the development of the disease.

摘要

从复杂的人类肠道微生物群中识别出足以描绘与疾病相关的微生物组改变的微生物标志物,具有重大意义。在此,我们开发了一种结合神经网络(NN)和随机森林的框架,分别从宏基因组数据集中(185个健康样本和183个2型糖尿病[T2D]样本)识别出40种标志物物种和90个标志物基因。就这些标志物而言,NN模型在对T2D相关样本进行分类时比其他方法具有更高的准确性;相互作用网络分析确定了关键物种和功能模块;回归分析确定空腹血糖是人类肠道微生物组T2D相关改变中最显著的因素(<0.05)。我们还观察到,这些标志物物种在病例和对照样本之间变化不大,但在T2D发展的不同阶段有很大变化,这表明它们在T2D相关的微生物组改变中发挥着重要作用。我们的研究提供了一种识别疾病相关生物标志物并分析它们在疾病发展中可能发挥的作用的新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dee2/10989819/990a71bf9a65/IMT2-1-e20-g006.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验