Suppr超能文献

古代固氮酶依赖于三磷酸腺苷。

Ancient nitrogenases are ATP dependent.

作者信息

Harris Derek F, Rucker Holly R, Garcia Amanda K, Yang Zhi-Yong, Chang Scott D, Feinsilber Hannah, Kaçar Betül, Seefeldt Lance C

机构信息

Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA.

Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.

出版信息

mBio. 2024 Jul 17;15(7):e0127124. doi: 10.1128/mbio.01271-24. Epub 2024 Jun 13.

Abstract

Life depends on a conserved set of chemical energy currencies that are relics of early biochemistry. One of these is ATP, a molecule that, when paired with a divalent metal ion such as Mg, can be hydrolyzed to support numerous cellular and molecular processes. Despite its centrality to extant biochemistry, it is unclear whether ATP supported the function of ancient enzymes. We investigate the evolutionary necessity of ATP by experimentally reconstructing an ancestral variant of the N-reducing enzyme nitrogenase. The Proterozoic ancestor is predicted to be ~540-2,300 million years old, post-dating the Great Oxidation Event. Growth rates under nitrogen-fixing conditions are ~80% of those of wild type in . In the extant enzyme, the hydrolysis of two MgATP is coupled to electron transfer to support substrate reduction. The ancestor has a strict requirement for ATP with no other nucleotide triphosphate analogs (GTP, ITP, and UTP) supporting activity. Alternative divalent metal ions (Fe, Co, and Mn) support activity with ATP but with diminished activities compared to Mg, similar to the extant enzyme. Additionally, it is shown that the ancestor has an identical efficiency in ATP hydrolyzed per electron transferred to the extant of two. Our results provide direct laboratory evidence of ATP usage by an ancient enzyme.IMPORTANCELife depends on energy-carrying molecules to power many sustaining processes. There is evidence that these molecules may predate the rise of life on Earth, but how and when these dependencies formed is unknown. The resurrection of ancient enzymes provides a unique tool to probe the enzyme's function and usage of energy-carrying molecules, shedding light on their biochemical origins. Through experimental reconstruction, this research investigates the ancestral dependence of a nitrogen-fixing enzyme on the energy carrier ATP, a requirement for function in the modern enzyme. We show that the resurrected ancestor does not have generalist nucleotide specificity. Rather, the ancestor has a strict requirement for ATP, like the modern enzyme, with similar function and efficiency. The findings elucidate the early-evolved necessity of energy-yielding molecules, delineating their role in ancient biochemical processes. Ultimately, these insights contribute to unraveling the intricate tapestry of evolutionary biology and the origins of life-sustaining dependencies.

摘要

生命依赖于一组保守的化学能量货币,它们是早期生物化学的遗留物。其中之一是ATP,这种分子在与二价金属离子(如Mg)结合时,可以被水解以支持众多细胞和分子过程。尽管ATP在现存生物化学中至关重要,但尚不清楚它是否支持古代酶的功能。我们通过实验重建固氮酶的祖先变体来研究ATP的进化必要性。元古代的祖先预计有5.4亿至23亿年的历史,在大氧化事件之后出现。在固氮条件下的生长速率约为野生型的80%。在现存的酶中,两个MgATP的水解与电子转移相偶联,以支持底物还原。祖先对ATP有严格的要求,没有其他三磷酸核苷酸类似物(GTP、ITP和UTP)支持其活性。替代的二价金属离子(Fe、Co和Mn)与ATP一起支持活性,但与Mg相比活性降低,这与现存的酶相似。此外,研究表明,祖先在每转移一个电子水解ATP方面与现存的酶具有相同的效率。我们的结果提供了古代酶使用ATP的直接实验室证据。

重要性

生命依赖于携带能量的分子来驱动许多维持生命的过程。有证据表明,这些分子可能早于地球上生命的出现,但这些依赖性是如何以及何时形成的尚不清楚。古代酶的复活提供了一个独特的工具,用于探究酶的功能以及对携带能量分子的使用情况,从而揭示它们的生化起源。通过实验重建,本研究调查了一种固氮酶对能量载体ATP的祖先依赖性,这是现代酶发挥功能的一个要求。我们表明,复活的祖先没有通用的核苷酸特异性。相反,祖先对ATP有严格的要求,就像现代酶一样,具有相似的功能和效率。这些发现阐明了产生能量分子的早期进化必要性,描绘了它们在古代生化过程中的作用。最终,这些见解有助于解开进化生物学的复杂谜团以及维持生命依赖性的起源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f23b/11253609/a0444931b9e7/mbio.01271-24.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验