Center of Cognitive and Computational Neuroscience, Universidad Complutense de Madrid (UCM), Madrid, Spain.
Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid (UCM), Madrid, Spain.
Geroscience. 2024 Dec;46(6):5485-5504. doi: 10.1007/s11357-024-01238-5. Epub 2024 Jun 13.
White matter hyperintensities of vascular origin (WMH) are commonly found in individuals over 60 and increase in prevalence with age. The significance of WMH is well-documented, with strong associations with cognitive impairment, risk of stroke, mental health, and brain structure deterioration. Consequently, careful monitoring is crucial for the early identification and management of individuals at risk. Luckily, WMH are detectable and quantifiable on standard MRI through visual assessment scales, but it is time-consuming and has high rater variability. Addressing this issue, the main aim of our study is to decipher the utility of quantitative measures of WMH, assessed with automatic tools, in establishing risk profiles for cerebrovascular deterioration. For this purpose, first, we work to determine the most precise WMH segmentation open access tool compared to clinician manual segmentations (LST-LPA, LST-LGA, SAMSEG, and BIANCA), offering insights into methodology and usability to balance clinical precision with practical application. The results indicated that supervised algorithms (LST-LPA and BIANCA) were superior, particularly in detecting small WMH, and can improve their consistency when used in parallel with unsupervised tools (LST-LGA and SAMSEG). Additionally, to investigate the behavior and real clinical utility of these tools, we tested them in a real-world scenario (N = 300; age > 50 y.o. and MMSE > 26), proposing an imaging biomarker for moderate vascular damage. The results confirmed its capacity to effectively identify individuals at risk comparing the cognitive and brain structural profiles of cognitively healthy adults above and below the resulted threshold.
血管源性脑白质高信号(WMH)在 60 岁以上人群中很常见,且随年龄增长而增加。WMH 的意义已得到充分证明,与认知障碍、中风风险、心理健康和大脑结构恶化密切相关。因此,仔细监测对于早期识别和管理高危人群至关重要。幸运的是,WMH 可通过标准 MRI 上的视觉评估量表进行检测和量化,但这种方法耗时且评估者间差异较大。为了解决这个问题,我们的主要研究目的是破译使用自动工具评估的 WMH 定量指标在建立脑血管恶化风险模型中的效用。为此,我们首先努力确定最精确的 WMH 分割开放获取工具,与临床医生手动分割(LST-LPA、LST-LGA、SAMSEG 和 BIANCA)进行比较,深入了解方法和可用性,在兼顾临床精度和实际应用的情况下找到平衡点。结果表明,监督算法(LST-LPA 和 BIANCA)表现更佳,特别是在检测小 WMH 方面,并且可以提高与无监督工具(LST-LGA 和 SAMSEG)一起使用时的一致性。此外,为了研究这些工具的行为和实际临床效用,我们在实际场景中进行了测试(N=300;年龄>50 岁且 MMSE>26),提出了一种用于中度血管损伤的影像学生物标志物。结果证实,该标志物能够通过比较认知健康成年人认知和大脑结构特征,有效地识别出阈值上下的风险人群。