Suppr超能文献

通过脚步引起的地面振动传感和人物不变对比学习进行家庭步态异常检测

In-Home Gait Abnormality Detection Through Footstep-Induced Floor Vibration Sensing and Person-Invariant Contrastive Learning.

作者信息

Dong Yiwen, Kim Sung Eun, Schadl Kornel, Huang Peide, Ding Wenhao, Rose Jessica, Noh Hae Young

出版信息

IEEE J Biomed Health Inform. 2024 Dec;28(12):7054-7067. doi: 10.1109/JBHI.2024.3413815. Epub 2024 Dec 5.

Abstract

Detecting gait abnormalities is crucial for assessing fall risks and early identification of neuromusculoskeletal disorders such as Parkinson's and stroke. Traditional assessments in gait clinics are infrequent and pose barriers, particularly for disadvantaged populations. Previous efforts have explored sensor-based approaches for in-home gait assessments, yet they face limitations such as visual obstructions (cameras), limited coverage (pressure mats), and the need for device carrying (wearables and insoles). To overcome these limitations, we introduce an in-home gait abnormality detection system using footstep-induced floor vibrations, enabling low-cost, non-intrusive, device-free gait health monitoring. The main research challenge is the high uncertainty in floor vibrations due to gait variations among people, making it challenging to develop a generalizable model for new patients. To address this, we analyze time-frequency-domain features of floor vibration data during specific gait phases and develop a feature transformation method through contrastive learning to address the between-people gait variation challenge. Our method transforms the features from vibrations to an embedding space where samples from different people stay close to each other (robust to people variation) while normal and abnormal gait samples are far apart (sensitive to gait abnormalities). Then, gait abnormalities are detected by a downstream classifier after feature transformation. We evaluated our approach through a real-world walking experiment with 21 participants and achieved an 85% to 95% mean accuracy in detecting various gait abnormalities. This novel method overcomes prior limitations in in-home gait assessments, offering accessible gait abnormality detection without the need for intrusive devices or labels for new patients.

摘要

检测步态异常对于评估跌倒风险以及早期识别帕金森氏症和中风等神经肌肉骨骼疾病至关重要。步态诊所的传统评估频率较低且存在障碍,特别是对于弱势群体。此前的努力探索了基于传感器的居家步态评估方法,但它们面临诸如视觉障碍(摄像头)、覆盖范围有限(压力垫)以及需要携带设备(可穿戴设备和鞋垫)等限制。为了克服这些限制,我们引入了一种利用脚步引起的地面振动的居家步态异常检测系统,实现低成本、非侵入式、无需设备的步态健康监测。主要研究挑战在于由于人与人之间的步态差异导致地面振动存在高度不确定性,这使得为新患者开发通用模型具有挑战性。为了解决这个问题,我们分析特定步态阶段地面振动数据的时频域特征,并通过对比学习开发一种特征变换方法,以应对人与人之间的步态差异挑战。我们的方法将振动特征变换到一个嵌入空间,在这个空间中,来自不同人的样本彼此靠近(对人之间的差异具有鲁棒性),而正常和异常步态样本则相距较远(对步态异常敏感)。然后,在特征变换后通过下游分类器检测步态异常。我们通过对21名参与者进行的实际行走实验评估了我们的方法,在检测各种步态异常方面达到了85%至95%的平均准确率。这种新方法克服了居家步态评估中的先前限制,无需侵入性设备或新患者的标签即可提供可及的步态异常检测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验