Dong Yiwen, Noh Hae Young
Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA.
Sensors (Basel). 2024 Apr 13;24(8):2496. doi: 10.3390/s24082496.
Quantitative analysis of human gait is critical for the early discovery, progressive tracking, and rehabilitation of neurological and musculoskeletal disorders, such as Parkinson's disease, stroke, and cerebral palsy. Gait analysis typically involves estimating gait characteristics, such as spatiotemporal gait parameters and gait health indicators (e.g., step time, length, symmetry, and balance). Traditional methods of gait analysis involve the use of cameras, wearables, and force plates but are limited in operational requirements when applied in daily life, such as direct line-of-sight, carrying devices, and dense deployment. This paper introduces a novel approach for gait analysis by passively sensing floor vibrations generated by human footsteps using vibration sensors mounted on the floor surface. Our approach is low-cost, non-intrusive, and perceived as privacy-friendly, making it suitable for continuous gait health monitoring in daily life. Our algorithm estimates various gait parameters that are used as standard metrics in medical practices, including (), (), and extracts (). The main challenge we addressed in this paper is the effect of different floor types on the resultant vibrations. We develop floor-adaptive algorithms to extract features that are generalizable to various practical settings, including homes, hospitals, and eldercare facilities. We evaluate our approach through real-world walking experiments with 20 adults with 12,231 labeled gait cycles across concrete and wooden floors. Our results show 90.5% (RMSE 0.08s), 71.3% (RMSE 0.38m), and 92.3% (RMSPE 7.7%) accuracy in estimating temporal, spatial parameters, and gait health indicators, respectively.
对人类步态进行定量分析对于神经和肌肉骨骼疾病(如帕金森病、中风和脑瘫)的早期发现、进展跟踪及康复治疗至关重要。步态分析通常涉及估计步态特征,如时空步态参数和步态健康指标(例如步时、步长、对称性和平衡)。传统的步态分析方法包括使用摄像头、可穿戴设备和测力板,但在日常生活中应用时操作要求受限,如需要直视、携带设备以及密集部署。本文介绍了一种新颖的步态分析方法,通过使用安装在地面表面的振动传感器被动感知人类脚步产生的地面振动。我们的方法成本低、非侵入性且被认为对隐私友好,使其适用于日常生活中的连续步态健康监测。我们的算法估计了在医学实践中用作标准指标的各种步态参数,包括()、(),并提取了()。我们在本文中解决的主要挑战是不同地板类型对产生的振动的影响。我们开发了适用于各种实际场景(包括家庭、医院和老年护理设施)的地板自适应算法来提取可推广的特征。我们通过对20名成年人进行的真实行走实验来评估我们的方法,这些实验在混凝土和木地板上产生了12231个标记步态周期。我们的结果表明,在估计时间、空间参数和步态健康指标方面,准确率分别为90.5%(均方根误差0.08秒)、71.3%(均方根误差0.38米)和92.3%(百分比误差均方根7.7%)。