Suppr超能文献

VisCARS:用于时间序列数据可视化和监控仪表板的基于知识图谱的上下文感知推荐系统。

VisCARS: Knowledge Graph-Based Context-Aware Recommender System for Time-Series Data Visualization and Monitoring Dashboards.

作者信息

Moens Pieter, Volckaert Bruno, Van Hoecke Sofie

出版信息

IEEE Trans Vis Comput Graph. 2025 Sep;31(9):4728-4745. doi: 10.1109/TVCG.2024.3414191.

Abstract

Data visualization recommendation aims to assist the user in creating visualizations from a given dataset. The process of creating appropriate visualizations requires expert knowledge of the available data model as well as the dashboard application that is used. To relieve the user from requiring this knowledge and from the manual process of creating numerous visualizations or dashboards, we present a context-aware visualization recommender system (VisCARS) for monitoring applications that automatically recommends a personalized dashboard to the user, based on the system they are monitoring and the task they are trying to achieve. Through a knowledge graph-based approach, expert knowledge about the data and the application is included as contextual features to improve the recommendation process. A dashboard ontology is presented that describes key components in a dashboard ecosystem in order to semantically annotate all the knowledge in the graph. The recommender system leverages knowledge graph embedding and comparison techniques in combination with a context-aware collaborative filtering approach to derive recommendations based on the context, i.e., the state of the monitored system, and the end-user preferences. The proposed methodology is implemented and integrated in a dynamic dashboard solution. The resulting recommender system is evaluated on a smart healthcare use-case through a quantitative performance and scalability analysis as well as a qualitative user study. The results highlight the performance of the proposed solution compared to the state-of-the-art and its potential for time-critical monitoring applications.

摘要

数据可视化推荐旨在帮助用户从给定的数据集中创建可视化。创建适当可视化的过程需要对可用数据模型以及所使用的仪表板应用程序有专业知识。为了使用户无需具备此知识以及无需手动创建大量可视化或仪表板的过程,我们提出了一种用于监控应用程序的上下文感知可视化推荐系统(VisCARS),该系统基于用户正在监控的系统和他们试图实现的任务,自动向用户推荐个性化的仪表板。通过基于知识图谱的方法,将有关数据和应用程序的专业知识作为上下文特征纳入,以改进推荐过程。提出了一种仪表板本体,用于描述仪表板生态系统中的关键组件,以便对图中的所有知识进行语义标注。推荐系统利用知识图谱嵌入和比较技术,结合上下文感知协同过滤方法,根据上下文(即被监控系统的状态)和最终用户偏好得出推荐。所提出的方法在一个动态仪表板解决方案中得以实现和集成。通过定量性能和可扩展性分析以及定性用户研究,对所得的推荐系统在智能医疗用例上进行了评估。结果突出了所提出解决方案与现有技术相比的性能及其在时间关键型监控应用中的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验