Eliance, 149 rue de Bercy, 75595 Paris cedex 12, France; Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France.
Walloon Agricultural Research Centre, Animal Production Unit, 5030 Gembloux, Belgium.
Animal. 2024 Jul;18(7):101200. doi: 10.1016/j.animal.2024.101200. Epub 2024 May 21.
Predicting methane (CH) emission from milk mid-infrared (MIR) spectra provides large amounts of data which is necessary for genomic selection. Recent prediction equations were developed using the GreenFeed system, which required averaging multiple CH4 measurements to obtain an accurate estimate, resulting in large data loss when animals unfrequently visit the GreenFeed. This study aimed to determine if calibrating equations on CH emissions corrected for diurnal variations or modeled throughout lactation would improve the accuracy of the predictions by reducing data loss compared with standard averaging methods used with GreenFeed data. The calibration dataset included 1 822 spectra from 235 cows (Holstein, Montbéliarde, and Abondance), and the validation dataset included 104 spectra from 46 (Holstein and Montbéliarde). The predictive ability of the equations calibrated on MIR spectra only was low to moderate (R = 0.22-0.36, RMSE = 57-70 g/d). Equations using CH averages that had been pre-corrected for diurnal variations tended to perform better, especially with respect to the error of prediction. Furthermore, pre-correcting CH values allowed to use all the data available without requiring a minimum number of spot measures at the GreenFeed device for calculating averages. This study provides advice for developing new prediction equations, in addition to a new set of equations based on a large and diverse population.
预测牛奶中甲烷(CH)的中红外(MIR)光谱排放量可以提供大量数据,这对于基因组选择是必要的。最近的预测方程是使用 GreenFeed 系统开发的,该系统需要平均多次 CH4 测量值以获得准确的估计,因此当动物不频繁访问 GreenFeed 时,会导致大量数据丢失。本研究旨在确定通过校正昼夜变化或对整个泌乳期进行建模来校准 CH 排放的方程是否可以通过减少与 GreenFeed 数据一起使用的标准平均方法的数据丢失来提高预测的准确性。校准数据集包括来自 235 头奶牛(荷斯坦、蒙贝利亚尔和阿邦丹斯)的 1822 个光谱,验证数据集包括来自 46 头奶牛(荷斯坦和蒙贝利亚尔)的 104 个光谱。仅基于 MIR 光谱校准的方程的预测能力较低至中等(R = 0.22-0.36,RMSE = 57-70 g/d)。使用已经预校正了昼夜变化的 CH 平均值的方程往往表现更好,尤其是在预测误差方面。此外,预先校正 CH 值允许在不要求在 GreenFeed 设备上进行最小数量的点测量以计算平均值的情况下使用所有可用的数据。本研究除了提供一组基于大量和多样化人群的新方程外,还为开发新的预测方程提供了建议。