Suppr超能文献

利用牛奶中红外反射光谱和其他常用预测因子通过人工神经网络预测加拿大荷斯坦奶牛的甲烷排放量。

Predicting methane emission in Canadian Holstein dairy cattle using milk mid-infrared reflectance spectroscopy and other commonly available predictors via artificial neural networks.

机构信息

Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.

Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada.

出版信息

J Dairy Sci. 2022 Oct;105(10):8272-8285. doi: 10.3168/jds.2021-21176. Epub 2022 Aug 31.

Abstract

Interest in reducing eructed CH is growing, but measuring CH emissions is expensive and difficult in large populations. In this study, we investigated the effectiveness of milk mid-infrared spectroscopy (MIRS) data to predict CH emission in lactating Canadian Holstein cows. A total of 181 weekly average CH records from 158 Canadian cows and 217 records from 44 Danish cows were used. For each milk spectra record, the corresponding weekly average CH emission (g/d), test-day milk yield (MY, kg/d), fat yield (FY, g/d), and protein yield (PY, g/d) were available. The weekly average CH emission was predicted using various artificial neural networks (ANN), partial least squares regression, and different sets of predictors. The ANN architectures consisted of 3 training algorithms, 1 to 10 neurons with hyperbolic tangent activation function in the hidden layer, and 1 neuron with linear (purine) activation function in the hidden layer. Random cross-validation was used to compared the predictor sets: MY (set 1); FY (set 2); PY (set 3); MY and FY (set 4); MY and PY (set 5); MY, FY, and PY (set 6); MIRS (set 7); and MY, FY, PY, and MIRS (set 8). All predictor sets also included age at calving and days in milk, in addition to country, season of calving, and lactation number as categorical effects. Using only MY (set 1), the predictive accuracy (r) ranged from 0.245 to 0.457 and the root mean square error (RMSE) ranged from 87.28 to 99.39 across all prediction models and validation sets. Replacing MY with FY (set 2; r = 0.288-0.491; RMSE = 85.94-98.04) improved the predictive accuracy, but using PY (set 3; r = 0.260-0.468; RMSE = 86.95-98.47) did not. Adding FY to MY (set 4; r = 0.272-0.469; RMSE = 87.21-100.76) led to a negligible improvement compared with sets 1 and 3, but it slightly decreased accuracy compared with set 2. Adding PY to MY (set 5; r = 0.250-0.451; RMSE = 87.66-100.94) did not improve prediction ability. Combining MY, FY, and PY (set 6; r = 0.252-0.455; RMSE = 87.74-101.93) yielded accuracy slightly lower than sets 2 and 3. Using only MIRS data (set 7; r = 0.586-0.717; RMSE = 69.09-96.20) resulted in superior accuracy compared with all previous sets. Finally, the combination of MIRS data with MY, FY, and PY (set 8; r = 0.590-0.727; RMSE = 68.02-87.78) yielded similar accuracy to set 7. Overall, sets including the MIRS data yielded significantly better predictions than the other sets. To assess the predictive ability in a new unseen herd, a limited block cross-validation was performed using 20 cows in the same Canadian herd, which yielded r = 0.229 and RMSE = 154.44, which were clearly much worse than the average r = 0.704 and RMSE = 70.83 when predictions were made by random cross-validation. These results warrant further investigation when more data become available to allow for a more comprehensive block cross-validation before applying the calibrated models for large-scale prediction of CH emissions.

摘要

人们对降低反刍 CH 排放量的兴趣日益浓厚,但在大量群体中,测量 CH 排放既昂贵又困难。在这项研究中,我们研究了牛奶中红外光谱(MIRS)数据预测加拿大荷斯坦泌乳奶牛 CH 排放的有效性。共使用了 158 头加拿大奶牛的 181 个每周平均 CH 记录和 44 头丹麦奶牛的 217 个记录。对于每个牛奶光谱记录,都有相应的每周平均 CH 排放量(g/d)、产奶量(MY,kg/d)、脂肪产量(FY,g/d)和蛋白质产量(PY,g/d)。使用各种人工神经网络(ANN)、偏最小二乘回归和不同的预测器集来预测每周平均 CH 排放量。ANN 架构由 3 种训练算法组成,在隐藏层中使用具有双曲正切激活函数的 1 到 10 个神经元,在隐藏层中使用线性(嘌呤)激活函数的 1 个神经元。使用随机交叉验证来比较预测器集:MY(集 1);FY(集 2);PY(集 3);MY 和 FY(集 4);MY 和 PY(集 5);MY、FY 和 PY(集 6);MIRS(集 7);以及 MY、FY、PY 和 MIRS(集 8)。所有预测器集还包括产犊时的年龄和产奶天数,以及国家、产犊季节和泌乳次数等分类效应。仅使用 MY(集 1),预测准确性(r)范围为 0.245 至 0.457,根均方误差(RMSE)范围为 87.28 至 99.39,所有预测模型和验证集均如此。用 FY(集 2;r = 0.288-0.491;RMSE = 85.94-98.04)代替 MY 提高了预测精度,但用 PY(集 3;r = 0.260-0.468;RMSE = 86.95-98.47)则没有。将 FY 添加到 MY(集 4;r = 0.272-0.469;RMSE = 87.21-100.76)与集 1 和 3 相比,几乎没有改善,但与集 2 相比,精度略有下降。将 PY 添加到 MY(集 5;r = 0.250-0.451;RMSE = 87.66-100.94)并没有提高预测能力。将 MY、FY 和 PY 结合(集 6;r = 0.252-0.455;RMSE = 87.74-101.93)的精度略低于集 2 和 3。仅使用 MIRS 数据(集 7;r = 0.586-0.717;RMSE = 69.09-96.20)的准确性明显高于所有以前的集合。最后,将 MIRS 数据与 MY、FY 和 PY 结合(集 8;r = 0.590-0.727;RMSE = 68.02-87.78)的准确性与集 7 相似。总的来说,包含 MIRS 数据的集合比其他集合产生了更好的预测。为了在新的未见过的牛群中评估预测能力,在同一加拿大牛群中使用 20 头奶牛进行了有限的块交叉验证,结果 r = 0.229,RMSE = 154.44,明显比随机交叉验证时 r = 0.704 和 RMSE = 70.83 的平均预测结果差很多。当获得更多数据以允许在大规模预测 CH 排放之前进行更全面的块交叉验证时,这些结果值得进一步研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验