Zhang Ruibo, Nolte Daniel, Sanchez-Villalobos Cesar, Ghosh Souparno, Pal Ranadip
Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA.
Department of Statistics, University of Nebraska - Lincoln, Lincoln, NB, 68588, USA.
Nat Commun. 2024 Jun 13;15(1):5072. doi: 10.1038/s41467-024-49372-0.
Quantitative structure-activity relationship (QSAR) modeling is a powerful tool for drug discovery, yet the lack of interpretability of commonly used QSAR models hinders their application in molecular design. We propose a similarity-based regression framework, topological regression (TR), that offers a statistically grounded, computationally fast, and interpretable technique to predict drug responses. We compare the predictive performance of TR on 530 ChEMBL human target activity datasets against the predictive performance of deep-learning-based QSAR models. Our results suggest that our sparse TR model can achieve equal, if not better, performance than the deep learning-based QSAR models and provide better intuitive interpretation by extracting an approximate isometry between the chemical space of the drugs and their activity space.
定量构效关系(QSAR)建模是药物发现的强大工具,但常用QSAR模型缺乏可解释性,阻碍了它们在分子设计中的应用。我们提出了一种基于相似性的回归框架——拓扑回归(TR),它提供了一种基于统计学、计算快速且可解释的技术来预测药物反应。我们将TR在530个ChEMBL人类靶点活性数据集上的预测性能与基于深度学习的QSAR模型的预测性能进行了比较。我们的结果表明,我们的稀疏TR模型能够实现与基于深度学习的QSAR模型相当甚至更好的性能,并且通过提取药物化学空间与其活性空间之间的近似等距关系提供更好的直观解释。