Suppr超能文献

相似文献

1
Model agnostic generation of counterfactual explanations for molecules.
Chem Sci. 2022 Feb 16;13(13):3697-3705. doi: 10.1039/d1sc05259d. eCollection 2022 Mar 30.
2
A Perspective on Explanations of Molecular Prediction Models.
J Chem Theory Comput. 2023 Apr 25;19(8):2149-2160. doi: 10.1021/acs.jctc.2c01235. Epub 2023 Mar 27.
3
Explaining Black Box Drug Target Prediction Through Model Agnostic Counterfactual Samples.
IEEE/ACM Trans Comput Biol Bioinform. 2023 Mar-Apr;20(2):1020-1029. doi: 10.1109/TCBB.2022.3190266. Epub 2023 Apr 3.
5
Thermodynamics-inspired explanations of artificial intelligence.
Nat Commun. 2024 Sep 9;15(1):7859. doi: 10.1038/s41467-024-51970-x.
6
CLARUS: An interactive explainable AI platform for manual counterfactuals in graph neural networks.
J Biomed Inform. 2024 Feb;150:104600. doi: 10.1016/j.jbi.2024.104600. Epub 2024 Jan 30.
7
Visual interpretability in 3D brain tumor segmentation network.
Comput Biol Med. 2021 Jun;133:104410. doi: 10.1016/j.compbiomed.2021.104410. Epub 2021 Apr 19.
8
GNNExplainer: Generating Explanations for Graph Neural Networks.
Adv Neural Inf Process Syst. 2019 Dec;32:9240-9251.
9
From local counterfactuals to global feature importance: efficient, robust, and model-agnostic explanations for brain connectivity networks.
Comput Methods Programs Biomed. 2023 Jun;236:107550. doi: 10.1016/j.cmpb.2023.107550. Epub 2023 Apr 16.
10
Why did AI get this one wrong? - Tree-based explanations of machine learning model predictions.
Artif Intell Med. 2023 Jan;135:102471. doi: 10.1016/j.artmed.2022.102471. Epub 2022 Dec 1.

引用本文的文献

1
Recent advances in AI-based toxicity prediction for drug discovery.
Front Chem. 2025 Jul 8;13:1632046. doi: 10.3389/fchem.2025.1632046. eCollection 2025.
2
ACES-GNN: can graph neural network learn to explain activity cliffs?
Digit Discov. 2025 Jun 30. doi: 10.1039/d5dd00012b.
3
Studying Noncovalent Interactions in Molecular Systems with Machine Learning.
Chem Rev. 2025 Jun 25;125(12):5776-5829. doi: 10.1021/acs.chemrev.4c00893. Epub 2025 Jun 9.
4
Machine Learning for Toxicity Prediction Using Chemical Structures: Pillars for Success in the Real World.
Chem Res Toxicol. 2025 May 19;38(5):759-807. doi: 10.1021/acs.chemrestox.5c00033. Epub 2025 May 2.
5
Chemical space as a unifying theme for chemistry.
J Cheminform. 2025 Jan 16;17(1):6. doi: 10.1186/s13321-025-00954-0.
8
Thermodynamics-inspired explanations of artificial intelligence.
Nat Commun. 2024 Sep 9;15(1):7859. doi: 10.1038/s41467-024-51970-x.
9
AGILE platform: a deep learning powered approach to accelerate LNP development for mRNA delivery.
Nat Commun. 2024 Jul 26;15(1):6305. doi: 10.1038/s41467-024-50619-z.

本文引用的文献

1
Deep Learning for Molecules and Materials.
Living J Comput Mol Sci. 2022 Oct 26;3(1). doi: 10.33011/livecoms.3.1.1499. Epub 2022 Jul 5.
2
ChemInformatics Model Explorer (CIME): exploratory analysis of chemical model explanations.
J Cheminform. 2022 Apr 4;14(1):21. doi: 10.1186/s13321-022-00600-z.
4
Coloring Molecules with Explainable Artificial Intelligence for Preclinical Relevance Assessment.
J Chem Inf Model. 2021 Mar 22;61(3):1083-1094. doi: 10.1021/acs.jcim.0c01344. Epub 2021 Feb 25.
7
PubChem in 2021: new data content and improved web interfaces.
Nucleic Acids Res. 2021 Jan 8;49(D1):D1388-D1395. doi: 10.1093/nar/gkaa971.
8
Findings of the Second Challenge to Predict Aqueous Solubility.
J Chem Inf Model. 2020 Oct 26;60(10):4791-4803. doi: 10.1021/acs.jcim.0c00701. Epub 2020 Sep 3.
10
Machine Learning Interatomic Potentials as Emerging Tools for Materials Science.
Adv Mater. 2019 Nov;31(46):e1902765. doi: 10.1002/adma.201902765. Epub 2019 Sep 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验