Yao Shuo, Yang Jingen, Yuan Sanling
College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China.
College of Mathematics and Statistics, Huanghuai University, Zhumadian 463000, China.
Math Biosci Eng. 2024 Apr 19;21(4):5658-5685. doi: 10.3934/mbe.2024249.
In this paper, we explored a modified Leslie-Gower predator-prey model incorporating a fear effect and multiple delays. We analyzed the existence and local stability of each potential equilibrium. Furthermore, we investigated the presence of periodic solutions via Hopf bifurcation bifurcated from the positive equilibrium with respect to both delays. By utilizing the normal form theory and the center manifold theorem, we investigated the direction and stability of these periodic solutions. Our theoretical findings were validated through numerical simulations, which demonstrated that the fear delay could trigger a stability shift at the positive equilibrium. Additionally, we observed that an increase in fear intensity or the presence of substitute prey reinforces the stability of the positive equilibrium.
在本文中,我们研究了一个修正的莱斯利 - 高尔捕食者 - 猎物模型,该模型纳入了恐惧效应和多个时滞。我们分析了每个潜在平衡点的存在性和局部稳定性。此外,我们研究了从正平衡点关于两个时滞通过霍普夫分岔产生的周期解的存在性。利用正规形理论和中心流形定理,我们研究了这些周期解的方向和稳定性。我们的理论结果通过数值模拟得到了验证,数值模拟表明恐惧时滞可能会在正平衡点处引发稳定性转变。此外,我们观察到恐惧强度的增加或替代猎物的存在会增强正平衡点的稳定性。