Suppr超能文献

使用源自细菌的超耐用水凝胶增强大鼠模型中的体积性肌肉损失(VML)恢复。

Enhancing volumetric muscle loss (VML) recovery in a rat model using super durable hydrogels derived from bacteria.

作者信息

Niknezhad Seyyed Vahid, Mehrali Mehdi, Khorasgani Farinaz Riyahi, Heidari Reza, Kadumudi Firoz Babu, Golafshan Nasim, Castilho Miguel, Pennisi Cristian Pablo, Hasany Masoud, Jahanshahi Mohammadjavad, Mehrali Mohammad, Ghasemi Younes, Azarpira Negar, Andresen Thomas L, Dolatshahi-Pirouz Alireza

机构信息

Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, 71987-54361, Iran.

Department of Civil and Mechanical Engineering, Technical University of Denmark, 2800, Kgs Lyngby, Denmark.

出版信息

Bioact Mater. 2024 Jun 1;38:540-558. doi: 10.1016/j.bioactmat.2024.04.006. eCollection 2024 Aug.

Abstract

Bacteria can be programmed to deliver natural materials with defined biological and mechanical properties for controlling cell growth and differentiation. Here, we present an elastic, resilient and bioactive polysaccharide derived from the extracellular matrix of sp. BCCS 001. Specifically, it was methacrylated to generate a new photo crosslinkable hydrogel that we coined Pantoan Methacrylate or put simply PAMA. We have used it for the first time as a tissue engineering hydrogel to treat VML injuries in rats. The crosslinked PAMA hydrogel was super elastic with a recovery nearing 100 %, while mimicking the mechanical stiffness of native muscle. After inclusion of thiolated gelatin via a Michaelis reaction with acrylate groups on PAMA we could also guide muscle progenitor cells into fused and aligned tubes - something reminiscent of mature muscle cells. These results were complemented by sarcomeric alpha-actinin immunostaining studies. Importantly, the implanted hydrogels exhibited almost 2-fold more muscle formation and 50 % less fibrous tissue formation compared to untreated rat groups. inflammation and toxicity assays likewise gave rise to positive results confirming the biocompatibility of this new biomaterial system. Overall, our results demonstrate that programmable polysaccharides derived from bacteria can be used to further advance the field of tissue engineering. In greater detail, they could in the foreseeable future be used in practical therapies against VML.

摘要

细菌可以被编程来递送具有特定生物学和机械性能的天然材料,以控制细胞的生长和分化。在此,我们展示了一种从sp. BCCS 001的细胞外基质中提取的弹性、韧性和生物活性多糖。具体而言,它被甲基丙烯酸酯化以生成一种新的可光交联水凝胶,我们将其命名为泛托丙烯酸甲酯,简称为PAMA。我们首次将其用作组织工程水凝胶来治疗大鼠的体积肌肉损失(VML)损伤。交联的PAMA水凝胶具有超弹性,恢复率接近100%,同时模拟了天然肌肉的机械硬度。通过与PAMA上的丙烯酸酯基团进行迈克尔反应加入硫醇化明胶后,我们还可以引导肌肉祖细胞形成融合且排列整齐的管状物——这让人联想到成熟的肌肉细胞。这些结果得到了肌节α - 辅肌动蛋白免疫染色研究的补充。重要的是,与未治疗的大鼠组相比,植入的水凝胶显示出肌肉形成增加了近2倍,纤维组织形成减少了50%。炎症和毒性检测同样得出了阳性结果,证实了这种新型生物材料系统的生物相容性。总体而言,我们的结果表明,源自细菌的可编程多糖可用于进一步推动组织工程领域的发展。更详细地说,在可预见的未来,它们可用于针对VML的实际治疗中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b2f/11170101/792b84967d69/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验