Suppr超能文献

相似文献

1
Nanoengineered myogenic scaffolds for skeletal muscle tissue engineering.
Nanoscale. 2022 Jan 20;14(3):797-814. doi: 10.1039/d1nr06143g.
6
Gelatin methacryloyl and Laponite bioink for 3D bioprinted organotypic tumor modeling.
Biofabrication. 2023 Jul 20;15(4). doi: 10.1088/1758-5090/ace0db.
7
In Vivo Printing of Nanoenabled Scaffolds for the Treatment of Skeletal Muscle Injuries.
Adv Healthc Mater. 2021 May;10(10):e2002152. doi: 10.1002/adhm.202002152. Epub 2021 Feb 28.
9
Functionalization of hyaluronic acid hydrogels with ECM-derived peptides to control myoblast behavior.
Acta Biomater. 2019 Jan 15;84:169-179. doi: 10.1016/j.actbio.2018.11.030. Epub 2018 Dec 1.
10
Gelatin-genipin-based biomaterials for skeletal muscle tissue engineering.
J Biomed Mater Res B Appl Biomater. 2018 Nov;106(8):2763-2777. doi: 10.1002/jbm.b.34057. Epub 2018 Feb 7.

引用本文的文献

2
Gelatin methacryloyl granular hydrogel scaffolds for skin wound healing.
Biomater Sci. 2025 Apr 29. doi: 10.1039/d4bm01062k.
6
Automated Microfluidics-Assisted Hydrogel-Based Wet-Spinning for the Biofabrication of Biomimetic Engineered Myotendinous Junction.
Adv Healthc Mater. 2024 Dec;13(32):e2402075. doi: 10.1002/adhm.202402075. Epub 2024 Sep 23.
7
Enhancing volumetric muscle loss (VML) recovery in a rat model using super durable hydrogels derived from bacteria.
Bioact Mater. 2024 Jun 1;38:540-558. doi: 10.1016/j.bioactmat.2024.04.006. eCollection 2024 Aug.
8
Developing Porous Fibrin Scaffolds with Tunable Anisotropic Features to Direct Myoblast Orientation.
Tissue Eng Part C Methods. 2024 May;30(5):217-228. doi: 10.1089/ten.TEC.2023.0363. Epub 2024 Apr 23.
9
Porous biomaterial scaffolds for skeletal muscle tissue engineering.
Front Bioeng Biotechnol. 2023 Oct 3;11:1245897. doi: 10.3389/fbioe.2023.1245897. eCollection 2023.
10
Gelatin methacryloyl and Laponite bioink for 3D bioprinted organotypic tumor modeling.
Biofabrication. 2023 Jul 20;15(4). doi: 10.1088/1758-5090/ace0db.

本文引用的文献

1
Printing of Adhesive Hydrogel Scaffolds for the Treatment of Skeletal Muscle Injuries.
ACS Appl Bio Mater. 2020 Mar 16;3(3):1568-1579. doi: 10.1021/acsabm.9b01176. Epub 2020 Feb 24.
2
Bioinks and Bioprinting Strategies for Skeletal Muscle Tissue Engineering.
Adv Mater. 2022 Mar;34(12):e2105883. doi: 10.1002/adma.202105883. Epub 2022 Feb 3.
3
printing of growth factor-eluting adhesive scaffolds improves wound healing.
Bioact Mater. 2021 Jul 5;8:296-308. doi: 10.1016/j.bioactmat.2021.06.030. eCollection 2022 Feb.
4
3D Printing of Microgel Scaffolds with Tunable Void Fraction to Promote Cell Infiltration.
Adv Healthc Mater. 2021 Sep;10(18):e2100644. doi: 10.1002/adhm.202100644. Epub 2021 Aug 3.
6
In Vivo Printing of Nanoenabled Scaffolds for the Treatment of Skeletal Muscle Injuries.
Adv Healthc Mater. 2021 May;10(10):e2002152. doi: 10.1002/adhm.202002152. Epub 2021 Feb 28.
7
Customizable Composite Fibers for Engineering Skeletal Muscle Models.
ACS Biomater Sci Eng. 2020 Feb 10;6(2):1112-1123. doi: 10.1021/acsbiomaterials.9b00992. Epub 2020 Jan 9.
8
Screening method to identify hydrogel formulations that facilitate myotube formation from encapsulated primary myoblasts.
Bioeng Transl Med. 2020 Sep 3;5(3):e10181. doi: 10.1002/btm2.10181. eCollection 2020 Sep.
9
Effects of extracellular matrix viscoelasticity on cellular behaviour.
Nature. 2020 Aug;584(7822):535-546. doi: 10.1038/s41586-020-2612-2. Epub 2020 Aug 26.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验