Bedmutha Manas Satish, Tsedenbal Anuujin, Tobar Kelly, Borsotto Sarah, Sladek Kimberly R, Singh Deepansha, Casanova-Perez Reggie, Bascom Emily, Wood Brian, Sabin Janice, Pratt Wanda, Hartzler Andrea, Weibel Nadir
UC San Diego, La Jolla, CA, United States.
University of Washington, Seattle, WA, United States.
Proc SIGCHI Conf Hum Factor Comput Syst. 2024 May;2024. doi: 10.1145/3613904.3641998. Epub 2024 May 11.
Patient-provider communication influences patient health outcomes, and analyzing such communication could help providers identify opportunities for improvement, leading to better care. Interpersonal communication can be assessed through "social-signals" expressed in non-verbal, vocal behaviors like interruptions, turn-taking, and pitch. To automate this assessment, we introduce a machine-learning pipeline that ingests audio-streams of conversations and tracks the magnitude of four social-signals: dominance, interactivity, engagement, and warmth. This pipeline is embedded into ConverSense, a web-application for providers to visualize their communication patterns, both within and across visits. Our user study with 5 clinicians and 10 patient visits demonstrates ConverSense's potential to provide feedback on communication challenges, as well as the need for this feedback to be contextualized within the specific underlying visit and patient interaction. Through this novel approach that uses data-driven self-reflection, ConverSense can help providers improve their communication with patients to deliver improved quality of care.
患者与医疗服务提供者之间的沟通会影响患者的健康结果,分析这种沟通有助于医疗服务提供者发现改进的机会,从而提供更好的护理。人际沟通可以通过非语言、声音行为中表达的“社交信号”来评估,如打断、轮流发言和音高。为了实现这种评估的自动化,我们引入了一个机器学习流程,该流程接收对话的音频流并跟踪四种社交信号的强度:主导性、互动性、参与度和热情度。这个流程被嵌入到ConverSense中,这是一个供医疗服务提供者可视化其在就诊期间及不同就诊之间沟通模式的网络应用程序。我们对5名临床医生和10次患者就诊进行的用户研究表明,ConverSense有潜力提供关于沟通挑战的反馈,以及在特定的潜在就诊和患者互动中对这种反馈进行情境化的必要性。通过这种使用数据驱动的自我反思的新颖方法,ConverSense可以帮助医疗服务提供者改善与患者的沟通,以提供更高质量的护理。