Sun Si-Lin, Zhou Bing-Wei, Liu Sheng-Zheng, Xiu Yu-Han, Bilal Anas, Long Hai-Xia
Department of Information Science Technology, Hainan Normal University, Haikou, Hainan, China.
Key Laboratory of Data Science and Smart Education, Ministry of Education, Hainan Normal University, Haikou, China.
Front Genet. 2024 May 30;15:1369811. doi: 10.3389/fgene.2024.1369811. eCollection 2024.
MicroRNAs (miRNAs) are small and non-coding RNA molecules which have multiple important regulatory roles within cells. With the deepening research on miRNAs, more and more researches show that the abnormal expression of miRNAs is closely related to various diseases. The relationship between miRNAs and diseases is crucial for discovering the pathogenesis of diseases and exploring new treatment methods. Therefore, we propose a new sparse autoencoder and MLP method (SPALP) to predict the association between miRNAs and diseases. In this study, we adopt advanced deep learning technologies, including sparse autoencoder and multi-layer perceptron (MLP), to improve the accuracy of predicting miRNA-disease associations. Firstly, the SPALP model uses a sparse autoencoder to perform feature learning and extract the initial features of miRNAs and diseases separately, obtaining the latent features of miRNAs and diseases. Then, the latent features combine miRNAs functional similarity data with diseases semantic similarity data to construct comprehensive miRNAs-diseases datasets. Subsequently, the MLP model can predict the unknown association among miRNAs and diseases. To verify the performance of our model, we set up several comparative experiments. The experimental results show that, compared with traditional methods and other deep learning prediction methods, our method has significantly improved the accuracy of predicting miRNAs-disease associations, with 94.61% accuracy and 0.9859 AUC value. Finally, we conducted case study of SPALP model. We predicted the top 30 miRNAs that might be related to Lupus Erythematosus, Ecute Myeloid Leukemia, Cardiovascular, Stroke, Diabetes Mellitus five elderly diseases and validated that 27, 29, 29, 30, and 30 of the top 30 are indeed associated. The SPALP approach introduced in this study is adept at forecasting the links between miRNAs and diseases, addressing the complexities of analyzing extensive bioinformatics datasets and enriching the comprehension contribution to disease progression of miRNAs.
微小RNA(miRNA)是小型非编码RNA分子,在细胞内具有多种重要的调节作用。随着对miRNA研究的不断深入,越来越多的研究表明,miRNA的异常表达与各种疾病密切相关。miRNA与疾病之间的关系对于发现疾病的发病机制和探索新的治疗方法至关重要。因此,我们提出了一种新的稀疏自编码器和多层感知器方法(SPALP)来预测miRNA与疾病之间的关联。在本研究中,我们采用先进的深度学习技术,包括稀疏自编码器和多层感知器(MLP),以提高预测miRNA-疾病关联的准确性。首先,SPALP模型使用稀疏自编码器进行特征学习,分别提取miRNA和疾病的初始特征,得到miRNA和疾病的潜在特征。然后,潜在特征将miRNA功能相似性数据与疾病语义相似性数据相结合,构建综合的miRNA-疾病数据集。随后,MLP模型可以预测miRNA和疾病之间未知的关联。为了验证我们模型的性能,我们设置了几个对比实验。实验结果表明,与传统方法和其他深度学习预测方法相比,我们的方法显著提高了预测miRNA-疾病关联的准确性,准确率为94.61%,AUC值为0.9859。最后,我们对SPALP模型进行了案例研究。我们预测了可能与红斑狼疮、急性髓系白血病、心血管疾病、中风、糖尿病这五种老年疾病相关的前30个miRNA,并验证了前30个中的27个、29个、29个、30个和30个确实相关。本研究中引入的SPALP方法擅长预测miRNA与疾病之间的联系,解决了分析大量生物信息学数据集的复杂性问题,并丰富了对miRNA在疾病进展中作用的理解。