Suppr超能文献

DT-SCNN:用于边缘应用的具有更少运算和内存访问的双阈值脉冲卷积神经网络。

DT-SCNN: dual-threshold spiking convolutional neural network with fewer operations and memory access for edge applications.

作者信息

Lei Fuming, Yang Xu, Liu Jian, Dou Runjiang, Wu Nanjian

机构信息

State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China.

Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.

出版信息

Front Comput Neurosci. 2024 May 30;18:1418115. doi: 10.3389/fncom.2024.1418115. eCollection 2024.

Abstract

The spiking convolutional neural network (SCNN) is a kind of spiking neural network (SNN) with high accuracy for visual tasks and power efficiency on neuromorphic hardware, which is attractive for edge applications. However, it is challenging to implement SCNNs on resource-constrained edge devices because of the large number of convolutional operations and membrane potential (Vm) storage needed. Previous works have focused on timestep reduction, network pruning, and network quantization to realize SCNN implementation on edge devices. However, they overlooked similarities between spiking feature maps (SFmaps), which contain significant redundancy and cause unnecessary computation and storage. This work proposes a dual-threshold spiking convolutional neural network (DT-SCNN) to decrease the number of operations and memory access by utilizing similarities between SFmaps. The DT-SCNN employs dual firing thresholds to derive two similar SFmaps from one Vm map, reducing the number of convolutional operations and decreasing the volume of Vms and convolutional weights by half. We propose a variant spatio-temporal back propagation (STBP) training method with a two-stage strategy to train DT-SCNNs to decrease the inference timestep to 1. The experimental results show that the dual-thresholds mechanism achieves a 50% reduction in operations and data storage for the convolutional layers compared to conventional SCNNs while achieving not more than a 0.4% accuracy loss on the CIFAR10, MNIST, and Fashion MNIST datasets. Due to the lightweight network and single timestep inference, the DT-SCNN has the least number of operations compared to previous works, paving the way for low-latency and power-efficient edge applications.

摘要

脉冲卷积神经网络(SCNN)是一种脉冲神经网络(SNN),在视觉任务中具有较高的准确率,并且在神经形态硬件上具有功率效率,这对边缘应用具有吸引力。然而,由于需要大量的卷积运算和膜电位(Vm)存储,在资源受限的边缘设备上实现SCNN具有挑战性。以前的工作主要集中在减少时间步长、网络剪枝和网络量化,以实现在边缘设备上的SCNN实现。然而,他们忽略了脉冲特征图(SFmaps)之间的相似性,这些特征图包含大量冗余,会导致不必要的计算和存储。这项工作提出了一种双阈值脉冲卷积神经网络(DT-SCNN),通过利用SFmaps之间的相似性来减少运算次数和内存访问。DT-SCNN采用双激发阈值从一个Vm图中导出两个相似的SFmaps,将卷积运算次数减少一半,并将Vm和卷积权重的体积减少一半。我们提出了一种具有两阶段策略的变体时空反向传播(STBP)训练方法来训练DT-SCNN,以将推理时间步长减少到1。实验结果表明,与传统的SCNN相比,双阈值机制在卷积层的运算和数据存储方面减少了50%,同时在CIFAR10、MNIST和Fashion MNIST数据集上的准确率损失不超过0.4%。由于网络轻量级和单时间步推理,与以前的工作相比,DT-SCNN的运算次数最少,为低延迟和高能效的边缘应用铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfa9/11169843/4cf668983eba/fncom-18-1418115-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验