Suppr超能文献

基于时间步长二值化 Spike 图的 Spike 卷积神经网络推理的高效高速 VLSI 架构

A Cost-Efficient High-Speed VLSI Architecture for Spiking Convolutional Neural Network Inference Using Time-Step Binary Spike Maps.

机构信息

School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China.

Key Laboratory of Dependable Service Computing in Cyber Physical Society, Ministry of Education, Chongqing University, Chongqing 400044, China.

出版信息

Sensors (Basel). 2021 Sep 8;21(18):6006. doi: 10.3390/s21186006.

Abstract

Neuromorphic hardware systems have been gaining ever-increasing focus in many embedded applications as they use a brain-inspired, energy-efficient spiking neural network (SNN) model that closely mimics the human cortex mechanism by communicating and processing sensory information via spatiotemporally sparse spikes. In this paper, we fully leverage the characteristics of spiking convolution neural network (SCNN), and propose a scalable, cost-efficient, and high-speed VLSI architecture to accelerate deep SCNN inference for real-time low-cost embedded scenarios. We leverage the snapshot of binary spike maps at each time-step, to decompose the SCNN operations into a series of regular and simple time-step CNN-like processing to reduce hardware resource consumption. Moreover, our hardware architecture achieves high throughput by employing a pixel stream processing mechanism and fine-grained data pipelines. Our Zynq-7045 FPGA prototype reached a high processing speed of 1250 frames/s and high recognition accuracies on the MNIST and Fashion-MNIST image datasets, demonstrating the plausibility of our SCNN hardware architecture for many embedded applications.

摘要

神经形态硬件系统在许多嵌入式应用中受到越来越多的关注,因为它们使用受大脑启发的、节能的尖峰神经网络 (SNN) 模型,通过时空稀疏尖峰来通信和处理感测信息,从而紧密模拟人类大脑皮层机制。在本文中,我们充分利用尖峰卷积神经网络 (SCNN) 的特点,提出了一种可扩展、低成本、高速的 VLSI 架构,以加速实时低成本嵌入式场景中的深度 SCNN 推理。我们利用每个时间步的二进制尖峰图的快照,将 SCNN 操作分解为一系列规则且简单的时间步长 CNN 类似的处理,以减少硬件资源消耗。此外,我们的硬件架构通过采用像素流处理机制和细粒度的数据流水线实现高吞吐量。我们的 Zynq-7045 FPGA 原型在 MNIST 和 Fashion-MNIST 图像数据集上达到了 1250 帧/秒的高处理速度和高识别精度,证明了我们的 SCNN 硬件架构在许多嵌入式应用中的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3837/8471769/afcfbcac5021/sensors-21-06006-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验