Suppr超能文献

CAFES:使用联邦自监督学习进行儿科COVID-19检测的胸部X光分析

CAFES: Chest X-ray Analysis using Federated Self-supervised Learning for Pediatric COVID-19 Detection.

作者信息

Parida Abhijeet, Anwar Syed Muhammad, Patel Malhar P, Blom Mathias, Einat Tal Tiano, Tonetti Alex, Baror Yuval, Dayan Ittai, Linguraru Marius George

机构信息

Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, 111 Michigan Ave, Washington, DC 20010, USA.

School of Medicine and Health Sciences, George Washington University, 2121 I St NW, Washington, DC 20052, USA.

出版信息

Proc SPIE Int Soc Opt Eng. 2024 Feb;12927. doi: 10.1117/12.3008757. Epub 2024 Apr 3.

Abstract

Chest X-rays (CXRs) play a pivotal role in cost-effective clinical assessment of various heart and lung related conditions. The urgency of COVID-19 diagnosis prompted their use in identifying conditions like lung opacity, pneumonia, and acute respiratory distress syndrome in pediatric patients. We propose an AI-driven solution for binary COVID-19 versus non-COVID-19 classification in pediatric CXRs. We present a Federated Self-Supervised Learning (FSSL) framework to enhance Vision Transformer (ViT) performance for COVID-19 detection in pediatric CXRs. ViT's prowess in vision-related binary classification tasks, combined with self-supervised pre-training on adult CXR data, forms the basis of the FSSL approach. We implement our strategy on the Rhino Health Federated Computing Platform (FCP), which ensures privacy and scalability for distributed data. The chest X-ray analysis using the federated SSL (CAFES) model, utilizes the FSSL-pre-trained ViT weights and demonstrated gains in accurately detecting COVID-19 when compared with a fully supervised model. Our FSSL-pre-trained ViT showed an area under the precision-recall curve (AUPR) of 0.952, which is 0.231 points higher than the fully supervised model for COVID-19 diagnosis using pediatric data. Our contributions include leveraging vision transformers for effective COVID-19 diagnosis from pediatric CXRs, employing distributed federated learning-based self-supervised pre-training on adult data, and improving pediatric COVID-19 diagnosis performance. This privacy-conscious approach aligns with HIPAA guidelines, paving the way for broader medical imaging applications.

摘要

胸部X光(CXR)在各种心肺相关疾病的经济高效临床评估中发挥着关键作用。COVID-19诊断的紧迫性促使其用于识别儿科患者的肺部混浊、肺炎和急性呼吸窘迫综合征等病症。我们提出了一种用于儿科CXR中COVID-19与非COVID-19二元分类的人工智能驱动解决方案。我们提出了一个联邦自监督学习(FSSL)框架,以提高视觉Transformer(ViT)在儿科CXR中检测COVID-19的性能。ViT在视觉相关二元分类任务中的优势,加上对成人CXR数据的自监督预训练,构成了FSSL方法的基础。我们在Rhino Health联邦计算平台(FCP)上实施我们的策略,该平台确保了分布式数据的隐私性和可扩展性。使用联邦SSL(CAFES)模型进行的胸部X光分析,利用了FSSL预训练的ViT权重,与完全监督模型相比,在准确检测COVID-19方面有显著提升。我们的FSSL预训练ViT在精确召回曲线下面积(AUPR)为0.952,比使用儿科数据进行COVID-19诊断的完全监督模型高出0.231分。我们的贡献包括利用视觉Transformer从儿科CXR中有效诊断COVID-19,在成人数据上采用基于分布式联邦学习的自监督预训练,以及提高儿科COVID-19诊断性能。这种注重隐私的方法符合HIPAA指南,为更广泛的医学成像应用铺平了道路。

相似文献

1
CAFES: Chest X-ray Analysis using Federated Self-supervised Learning for Pediatric COVID-19 Detection.
Proc SPIE Int Soc Opt Eng. 2024 Feb;12927. doi: 10.1117/12.3008757. Epub 2024 Apr 3.
3
IEViT: An enhanced vision transformer architecture for chest X-ray image classification.
Comput Methods Programs Biomed. 2022 Nov;226:107141. doi: 10.1016/j.cmpb.2022.107141. Epub 2022 Sep 16.
4
Label-Efficient Self-Supervised Federated Learning for Tackling Data Heterogeneity in Medical Imaging.
IEEE Trans Med Imaging. 2023 Jul;42(7):1932-1943. doi: 10.1109/TMI.2022.3233574. Epub 2023 Jun 30.
6
Federated semi-supervised learning for COVID region segmentation in chest CT using multi-national data from China, Italy, Japan.
Med Image Anal. 2021 May;70:101992. doi: 10.1016/j.media.2021.101992. Epub 2021 Feb 6.
7
ResNetFed: Federated Deep Learning Architecture for Privacy-Preserving Pneumonia Detection from COVID-19 Chest Radiographs.
J Healthc Inform Res. 2023 Jun 14;7(2):203-224. doi: 10.1007/s41666-023-00132-7. eCollection 2023 Jun.
8
MTSS-AAE: Multi-task semi-supervised adversarial autoencoding for COVID-19 detection based on chest X-ray images.
Expert Syst Appl. 2023 Apr 15;216:119475. doi: 10.1016/j.eswa.2022.119475. Epub 2023 Jan 4.
10
FedDUS: Lung tumor segmentation on CT images through federated semi-supervised with dynamic update strategy.
Comput Methods Programs Biomed. 2024 Jun;249:108141. doi: 10.1016/j.cmpb.2024.108141. Epub 2024 Mar 25.

本文引用的文献

1
Transformers in medical imaging: A survey.
Med Image Anal. 2023 Aug;88:102802. doi: 10.1016/j.media.2023.102802. Epub 2023 Apr 5.
2
COVID-19 in Children.
Infect Dis Clin North Am. 2022 Mar;36(1):1-14. doi: 10.1016/j.idc.2021.11.002. Epub 2021 Nov 15.
3
Federated learning for predicting clinical outcomes in patients with COVID-19.
Nat Med. 2021 Oct;27(10):1735-1743. doi: 10.1038/s41591-021-01506-3. Epub 2021 Sep 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验