University of the West of Scotland, High St., Paisley, PA1 2BE, UK.
Durham University, Stockton Road, Durham, DH1 3LE, UK.
Comput Methods Programs Biomed. 2022 Nov;226:107141. doi: 10.1016/j.cmpb.2022.107141. Epub 2022 Sep 16.
Chest X-ray imaging is a relatively cheap and accessible diagnostic tool that can assist in the diagnosis of various conditions, including pneumonia, tuberculosis, COVID-19, and others. However, the requirement for expert radiologists to view and interpret chest X-ray images can be a bottleneck, especially in remote and deprived areas. Recent advances in machine learning have made possible the automated diagnosis of chest X-ray scans. In this work, we examine the use of a novel Transformer-based deep learning model for the task of chest X-ray image classification.
We first examine the performance of the Vision Transformer (ViT) state-of-the-art image classification machine learning model for the task of chest X-ray image classification, and then propose and evaluate the Input Enhanced Vision Transformer (IEViT), a novel enhanced Vision Transformer model that can achieve improved performance on chest X-ray images associated with various pathologies.
Experiments on four chest X-ray image data sets containing various pathologies (tuberculosis, pneumonia, COVID-19) demonstrated that the proposed IEViT model outperformed ViT for all the data sets and variants examined, achieving an F1-score between 96.39% and 100%, and an improvement over ViT of up to +5.82% in terms of F1-score across the four examined data sets. IEViT's maximum sensitivity (recall) ranged between 93.50% and 100% across the four data sets, with an improvement over ViT of up to +3%, whereas IEViT's maximum precision ranged between 97.96% and 100% across the four data sets, with an improvement over ViT of up to +6.41%.
Results showed that the proposed IEViT model outperformed all ViT's variants for all the examined chest X-ray image data sets, demonstrating its superiority and generalisation ability. Given the relatively low cost and the widespread accessibility of chest X-ray imaging, the use of the proposed IEViT model can potentially offer a powerful, but relatively cheap and accessible method for assisting diagnosis using chest X-ray images.
胸部 X 光成像作为一种相对廉价且易于获取的诊断工具,可以辅助诊断各种疾病,包括肺炎、肺结核、COVID-19 等。然而,需要专业放射科医生来查看和解释胸部 X 光图像,这可能会成为一个瓶颈,尤其是在偏远和贫困地区。最近,机器学习的进步使得胸部 X 光扫描的自动诊断成为可能。在这项工作中,我们研究了一种新的基于转换器的深度学习模型在胸部 X 光图像分类任务中的应用。
我们首先检查了视觉转换器(ViT)最先进的图像分类机器学习模型在胸部 X 光图像分类任务中的性能,然后提出并评估了输入增强视觉转换器(IEViT),这是一种新的增强视觉转换器模型,能够在与各种病理相关的胸部 X 光图像上实现更好的性能。
在包含各种病理(肺结核、肺炎、COVID-19)的四个胸部 X 光图像数据集上的实验表明,所提出的 IEViT 模型在所有检查的数据集中都优于 ViT,在四个检查的数据集中,F1 得分在 96.39%到 100%之间,F1 得分提高了+5.82%。IEViT 的最大灵敏度(召回率)在四个数据集之间的范围为 93.50%到 100%,与 ViT 相比提高了+3%,而 IEViT 的最大精度在四个数据集之间的范围为 97.96%到 100%,与 ViT 相比提高了+6.41%。
结果表明,所提出的 IEViT 模型在所有检查的胸部 X 光图像数据集上都优于所有 ViT 的变体,证明了它的优越性和泛化能力。鉴于胸部 X 光成像的相对低成本和广泛可及性,使用所提出的 IEViT 模型可以为使用胸部 X 光图像进行辅助诊断提供一种强大但相对廉价且易于获取的方法。