Li Ming, Zhu Xiaonan, Jiang Chenxu, Liu Xing, Li Zhen, Xu Gang, Wang Hongyong, Wu Minghong, Song Chan, Zhou Wenfeng, Wu Chao, Wang Guanyao
School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China.
Small. 2024 Oct;20(42):e2402925. doi: 10.1002/smll.202402925. Epub 2024 Jun 14.
Aqueous Zn metal batteries are attracting tremendous interest as promising energy storage systems due to their intrinsic safety and cost-effectiveness. Nevertheless, the reversibility of Zn metal anodes (ZMAs) is hindered by water-induced parasitic reactions and dendrite growth. Herein, a novel hydrated eutectic electrolyte (HEE) consisting of Zn(BF)·xHO and sulfolane (SL) is developed to prevent the side reactions and achieve the outstanding cyclability of ZMAs. The strong coordination between Zn and SL triggers the eutectic feature, enabling the low-temperature availability of HEEs. The restriction of BF hydrolysis in the eutectic system can realize favorable compatibility between Zn(BF)-based electrolyte and ZMAs. Besides, the newly-established solvation structure with the participation of SL, HO, and BF , can induce in situ formation of desirable SEI with gradient structure consisting of B,O-rich species, ZnS, and ZnF, to offer satisfactory protection toward ZMAs. Consequently, the HEE allows the Zn||Zn symmetric cell to cycle over 1650 h at 2 mA cm and 1 mA h cm. Moreover, the Zn||NHVO full batteries can deliver a prolonged lifespan for 1000 cycles with a high capacity retention of 83.4%. This work represents a feasible approach toward the elaborate design of advanced electrolyte systems for next-generation batteries.
水系锌金属电池因其固有的安全性和成本效益,作为一种很有前景的储能系统正吸引着人们极大的兴趣。然而,锌金属阳极(ZMA)的可逆性受到水引发的寄生反应和枝晶生长的阻碍。在此,开发了一种由Zn(BF)·xHO和环丁砜(SL)组成的新型水合共晶电解质(HEE),以防止副反应并实现ZMA出色的循环性能。Zn与SL之间的强配位作用引发了共晶特性,使HEE在低温下也可使用。共晶体系中BF水解的受限可实现基于Zn(BF)的电解质与ZMA之间良好的兼容性。此外,新建立的由SL、HO和BF参与的溶剂化结构可诱导原位形成具有由富含B、O的物种、ZnS和ZnF组成的梯度结构的理想固体电解质界面(SEI),从而为ZMA提供令人满意的保护。因此,HEE可使Zn||Zn对称电池在2 mA cm和1 mA h cm的条件下循环超过1650小时。此外,Zn||NHVO全电池可实现1000次循环的长寿命,容量保持率高达83.4%。这项工作代表了一种为下一代电池精心设计先进电解质系统的可行方法。